

ž

औ

K

四日

Model Development Priorities at EMC

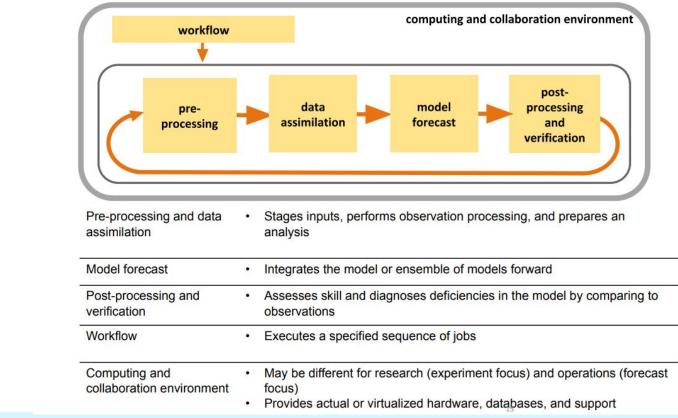
NATIONAL WEATHER SERVICE The Team IOOS Advisory Committee meeting December 5, 2023

Acknowledgements

- All of the outstanding scientists and engineers at the Environmental Modeling Center, and Collaborators within NOAA, at other Federal agencies, Academia, and the Private Sector
- Reference

-25

औ


x

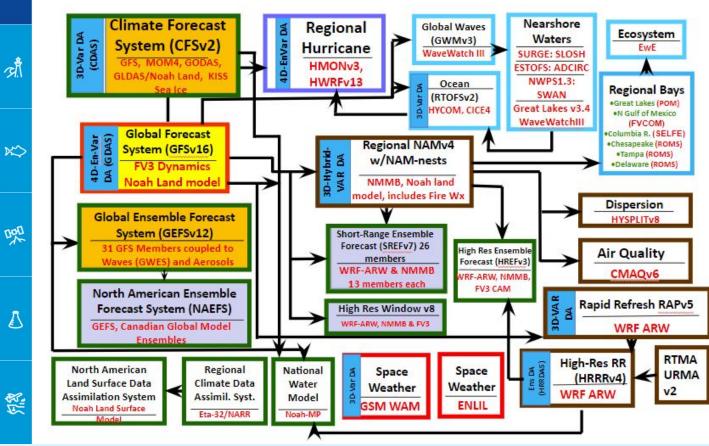
四日

12

• EMC 5-Year Implementation Plan

What comprises an NWP Application?

NATIONAL WEATHER SERVICE

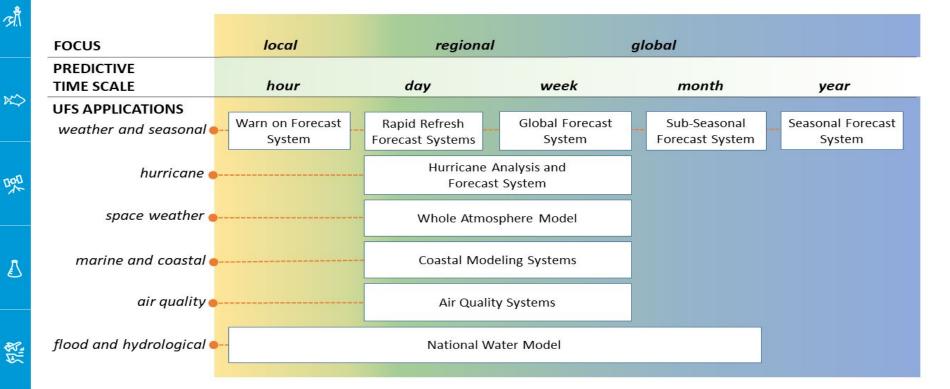

औ

R

四

12

Current State of NCEP Production Suite



- NCEP operates more than 38 distinct modeling systems to meet the stakeholder requirements
- Quilt of Models developed to meet the service needs over a long period of time
- Simplification of NCEP Production Suite is critical to reduce redundancy and improve efficiency

NATIONAL WEATHER SERVICE

ž

The Goal: Transition to UFS Applications and Simplify NCEP Production Suite

NATIONAL WEATHER SERVICE

ž

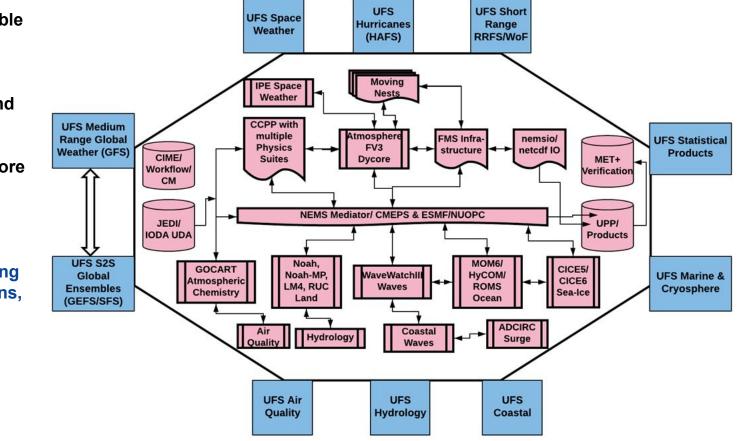
NPS Transitioning to UFS Applications

"UFS is configurable into multiple applications that span local to global domains and predictive time scales from less than an hour to more than a year."

ž

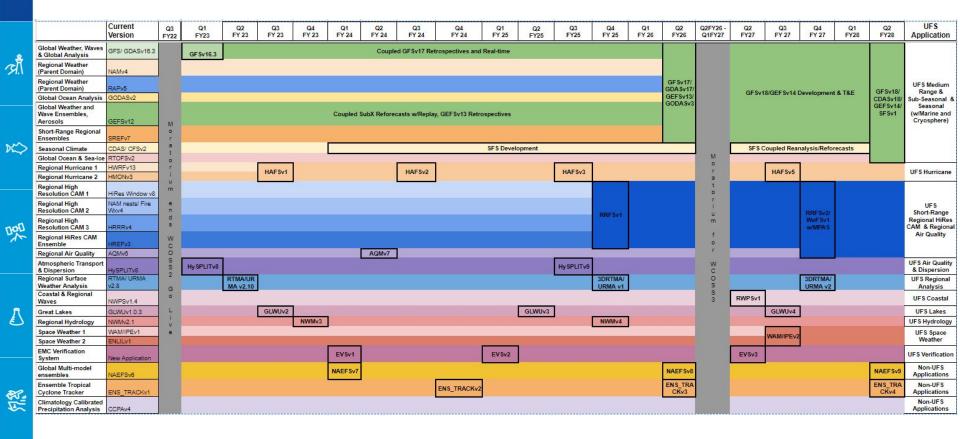
औ

KS


明

 \square

12

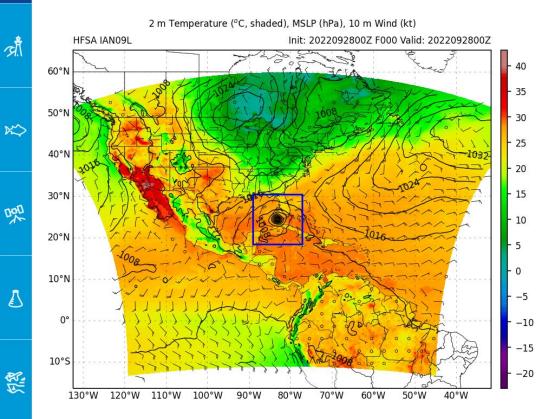

ПОЯЯ

Conceptual UFS applications in production covering all NPS applications, maintaining the dependencies between the applications and products.

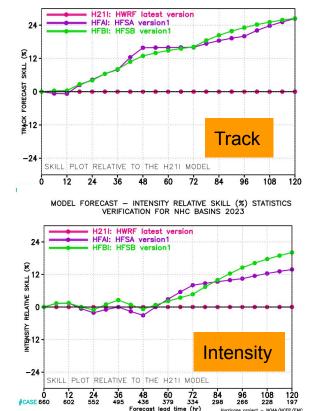
NATIONAL WEATHER SERVICE

Notional Schedule for Transition to UFS Applications

明


Hurricane Analysis and Prediction System

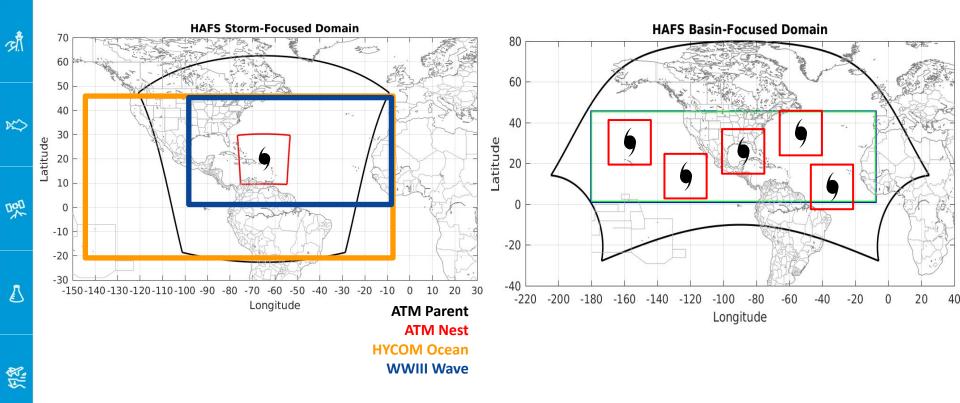
⊿


512

NATIONAL WEATHER SERVICE

HAFSv1 Approved for Operational Implementation for 2023 **Hurricane Season**

MODEL FORECAST - TRACK FORECAST SKILL (%) STATISTICS VERIFICATION FOR NHC BASINS 2023


Building a Weather-Ready Nation // 9

Hurricane project - NOAA/NCEP/EMC

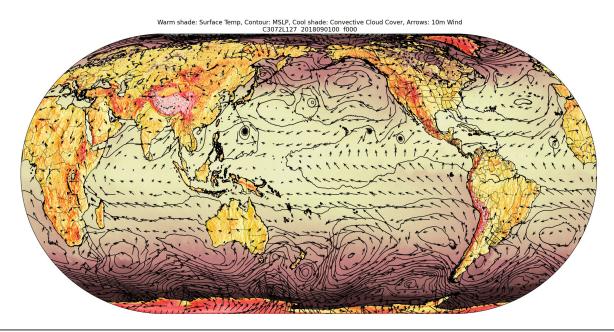
NATIONAL WEATHER SERVICE

ž

HAFS Development Priorities: future innovations

NATIONAL WEATHER SERVICE

ž



NATIONAL WEATHER SERVICE

Global Coupled Prediction Systems

MRW/S2S: Building a Six-Way Global Coupled Unified Forecast System For future GFS, GEFS and SFS

UFS Earth System Model Components:

- FV3 (Atmosphere)
- MOM6 (Ocean)
- CICE6 (Sea Ice)
- WW3 (Waves)
- NOAH-MP (Land)
- GOCART (Aerosols)

A fully coupled UFS serves as a foundation for future operational global forecast systems at NOAA/NWS/NCEP ranging from weather to subseasonal to seasonal scales.

NATIONAL WEATHER SERVICE

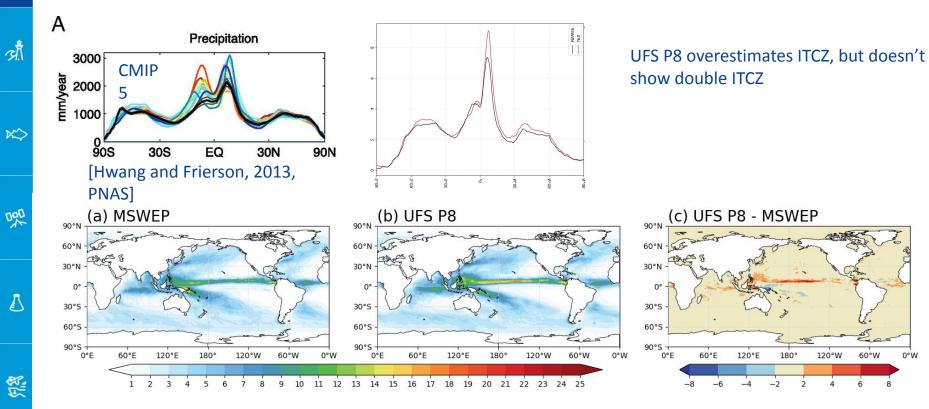
Building a Weather-Ready Nation // 12

12

ž

औ

x

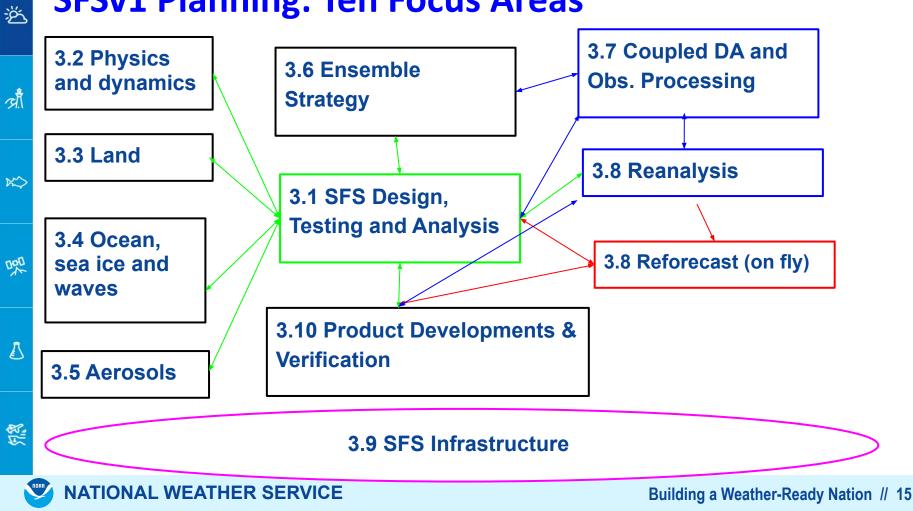

THE

Coupled UFS Prototypes 1–8

ऋौँ	Prototype	Atmospheric Model C384 (~0.25 degree) horizontal resolution			Ocean Model Tripolar ~0.25 degree	Wave Model Regular lat/lon 0.5 degree	lce Model Tripolar ~0.25	Mediator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Dynamical Model	Physics Settings & Driver	Land Model	horizontal resolution	grid	degree horizontal resolution	
*	P1	FV3	GFSv15.2,	Noah LSM	MOM6	N/A	CICE5	NEMS
	P2	64 layers,	IPD driver					
	P3.1	Non- Fractional grid (model top at						
哭	P4		GFSv15.2,	]		<mark>WW3</mark>		
	Р5	54km)	CCPP driver				CICE6 (Mushy TD not turned on)	CMEPS
	P6	FV3	<mark>GFSv16</mark>					
Δ	Р7	127 layers, Fractional grid	<mark>Modified</mark> GFSv16	<mark>Noah-MP</mark> LSM			CICE6 ( <mark>Mushy TD</mark> turned on)	
知識	P8	<mark>(model top at</mark> <mark>80km)</mark>	Further Modified GFSv16	Modified Noah-MP LSM	(P8+	includes on	e-way coupled a	erosols)

ž

### No Double ITCZ in UFS P8 climate run




NATIONAL WEATHER SERVICE

ž

NORA

## **SFSv1** Planning: Ten Focus Areas



## **Regional Prediction System**

NATIONAL WEATHER SERVICE

ž

.

 $\kappa$ 

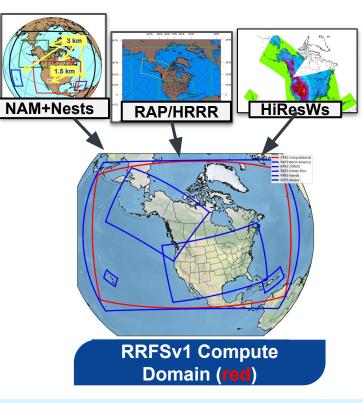
哭

 $\square$ 

512



औ


K)

THE

12

## Rapid Refresh Forecast System (RRFS) A UFS Application

- FV3 dynamical core <u>Limited Area Model</u>
- Hourly updated
- 3 km grid spacing over North America
  - 65 vertical layers
  - Hybrid 3DEnVar assimilation (30 members)
- Includes Smoke & Dust
- Deterministic forecasts to at least 18h every hour
- Deterministic & Ensemble forecasts to 48+h every 6 hours



### RRFSv2

- Possible transition from FV3 dynamical core to MPAS
  - Motivated by long standing performance issues with convective-storms
- Adding American Samoa and Micronesia Support
- Expanding ensemble forecast membership/cycles
  - Moving to single physics if not accomplished in v1
- Transition from GSI to JEDI data assimilation software/infrastructure
- Inclusion of more blending/overlapping-windows/multi-scale information for analysis
- Addition of new observations: DPQC radial velocities, GREMLIN, PBL height, all-sky radiances, etc...
- Transition to Noah-MP LSM, RRTMGP?, Air Quality/Chemistry?

ž

औ

KS

四日

 $\wedge$ 







## **Data Assimilation Advancements: Transition to JEDI**



明



NATIONAL WEATHER SERVICE

### Joint Effort for Data assimilation Integration Infrastructure for Unified Data Assimilation

GSI in operations since 2007, but portions of the code are 30+ years oldJEDI is a project within the Joint Center for Satellite Data Assimilation (JCSDA)JEDI provides a software infrastructure for DA that:

- is model agnostic (but requires an interface to models!)
- is generic and portable
- does not impose specific methodologies or algorithms
- allows to share efforts (new observation types, etc.) across different orgs.

JEDI will allow us to have one shared codebase for all DA, from global to regional, and for all Earth-system components



NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 20

 $\mathbb{P}$ 

12

ž

औ

K

四日

Global Weather, Waves & Global Analysis - GFS/GDAS								Medium Range &
Global Weather and Wave Ensembles, Aerosols - GEFS								Subseasonal
Short-Range Regional Ensembles - SREF				17/ v13 Seasonal	Reforecast Production		GFSv18/ GEFSv14/	Marine 9
Global Ocean & Sea-Ice - RTOFS RTOFSv2								Marine & Cryosphere
Global Ocean Analysis - GODAS	GODASv3						Seasonal	
Seasonal Climate - CDAS/CFS					14			Seasonal
Regional Hurricane 1 - HWRF	HAFSv1		HAFSv2		HAFSv3		HAFSv4	Hurrisons
Regional Hurricane 2 - HMON	HAPSVI		HAFSV2		HAFSV3		HAF5V4	Hurricane
Regional High Resolution CAM 1 - HiRes Window								
Regional High Resolution CAM 2 - NAM nests / Fire Wx								
Regional High Resolution CAM 3 - RAPv5 / HRRR		RRFSv1			RRFSv2		RRFSv3/	Short-Range Regional
Regional HiRes CAM Ensemble - HREF				RKE5V			WoFSv1	& Regional Atmospheric
Regional Mesoscale Weather - NAM		H						Composition
Regional Air Quality - AQM								
Regional Surface Weather Analysis - RTMA / URMA	3DRTMA/URMA v3			v4		v5		
Atmospheric Transport & Dispersion - HySPLIT	IySPLITv8			HySPLITv9			HySPLITv10	Air Dispersion
Coastal & Regional Waves - NWPS	v1.4		R	WPSv1	RWPSv2	]	Coastal	
Great Lakes - GLWU GLWUv1.2				G	LWUv2	GLWUv3		Lakes
Regional Hydrology - NWM			NWMv3					Hydrology

### **Notional JEDI Transition Schedule**

Full Transition Non-Atm Components



Department of Commerce // National Oceanic and Atmospheric Administration // 21

## **Review/Current Status & 10 Year Strategy**

**Completing Final Review** 

### History & Current Status

- Introduction
- Atmospheric Systems
- Marine, Land, Composition, and Coupled Assimilation
- Current Use of Observations
- Monitoring & Observation Impacts
- Current Implementation Procedure



- Introduction
- Advanced Infrastructure/JEDI
- Research and Development
- Data Assimilation Vision Holistic Approach











明

## **Application of AI/ML for Operational NWP**

⊿

512

NATIONAL WEATHER SERVICE

#### **EMC Developments in ML for NWP & Climate** ž NN LWR for DAS ECMWF औ 2000 2018 NN Training and Validation Software Decadal Hybridization NN SSM/I NN (50years) Climate NN New NN Moisture ×> Paradigm NN Technique Wind Speed Nonlinear Simulations wit Radiation Parameterization was For Filling Gaps Retrieval Wave-Wave Hybrid NCAR for NCEP Based on CRM NN Wave NWS Introduced In Satellite Data Algorithm Interaction GFS Data CAM Ensemble 2020 Years 000 2010 2016 1995 1997 2006 2007 2008 2012 2018 2019 2002 2005 2013 2014 NN NN NN Model NN Decadal Climate NN Long NN SSM/I **NN Emulation** Ensemble **Biological Model** Physics Simulations wit Observation Wave Forward of Super-Averaging for DAS Suite for Hybrid NCEP Radiation **Operator for** Model for Parameterization FV3GFS CFS for NCAR DAS Direct ⊿ CAM Assimilation



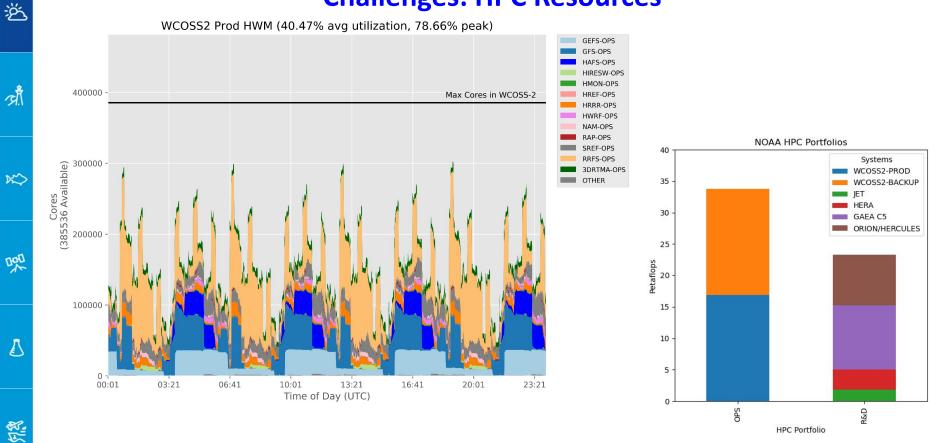


## **Current/Planned AI/ML Activities at NCEP/EMC**

<b>£</b>	
No	
7.1	

R

DOD


 $\square$ 

Observations	Data Assimilation	Forecast	Post/Product
Radiosonde processing	Physics emulation	AC Accelerated Transport	Wave Systems
Satellite Thinning	Improved Background	Atmospheric Chemistry Emulator	Air Quality Bias Correction
AMV super-observations and error estimation	Background Error Covariances	Physics Suite Emulation	Sub-Seasonal/ Seasonal forecast products
Conventional / Aircraft quality control	CRTM emissivity modeling	Radiation Parameterizations	
Observation Anomaly Detection	High-resolution background downscaling and emulation	Ensemble Forecasting / Forecast Model Emulation	
	Radiance bias correction	Fire emissions for sub-seasonal to seasonal predictions	



51.53

### **Challenges: HPC Resources**



** Significant increase in R&D HPC is anticipated from DRSA, BIL, and IRA; still may be insufficient for R2O

### NATIONAL WEATHER SERVICE

# Imagine a World ....

- Operational Production Suite backbone of continuously assimilating comprehensive coupled Earth System Model
  - "Digital Twin" constant update of global state and innovation of training data
- Regular prediction systems (e.g., 2/day global, hourly CAM) and ad hoc (hurricane, fire, dispersion, etc)
- Variety of approaches deterministic, ensemble-based, surrogate systems trained on reanalysis and backbone
- Cloud-based systems to accommodate HPC requirements as-needed

-25

R

DOD





## Thank you!

⊿





Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

Environmental Modeling Center Review 28