
NERACOOS Infrastructure Update:
A Steller view of problematic data

Alex Kerney
Dylan Pugh

Where Are We?

You are here

All the data in
the Gulf of
Maine

Where We Started

• Cron*
• SEC - cron but less likely to start up correctly with the system
• Untracked, unmanaged, conflicting environments
• Observability = cranky emails
• Super rickety EC2 instances that were migrated from another provider

*if you are still in the world of cron, or other opaque orchestration
systems, healthchecks.io and similar services will help you sleep better.

http://healthchecks.io

What Were Our Goals?

• Know what state the data is in
• Know what are workflows were up to
• Allow services and data pipelines to evolve at their own rate
• Manage the blast radius, have a better idea of what failures will affect
• Have standard ways to describe, deploy, observe, and interact with

parts of the system

Essential vs Accidental complexity
(aka The Mess)

Essential
• Dealing with other systems
• Derived data
• Services have to run

somewhere
• Services & data needs to be

publicly accessible
• Services & data have

dependencies
• The ocean

Accidental
• Lack of observability/monitoring/

debug-ability
• Library dependency conflicts

between workloads
• Un-declared data dependencies
• Network or server hiccups
• Cron timing mismatches
• Blurred lines between

infrastructure and data
complexity

Early Decisions - Kubernetes

• Docker containers enforce strong isolation and repeatable
environments

• Kubernetes enforces strong interfaces between workloads
• Lots of community, tooling, and knowledge
• Standard ways to see:

• Which workloads are exposed to the internet
• The dependencies of a workload
• States of components

Early Decisions - Kubernetes

• Spent 4 years learning on smaller projects and clusters as a team
• Learned how to lean on provider and community tools

• Argo CD, Kustomize and Helm
• Grafana, Cert-Manager, External Secrets Operator

• How do our services react to being containerized, treated as cattle, and
forced into playing with the cloud?
• ERDDAP & S3

What We Tried - Pachyderm

• Language agnostic, Docker & Kubernetes based execution model
• Workflows triggered by changes in data store structure
• Agnostic to type of data
• Very opinionated about structure of data store
• Really doesn’t want anyone else touching its data store
• Minimal observability of tasks or data
• Licensing and cost went from friendly to extremely expensive

What We Tried- Prefect

• Python workflow engine
• Hybrid cloud options to let them manage the orchestrator
• Really quick to get going, and wrap your head around the concepts
• Easy to pass data between tasks
• UI is focused more on stats about your tasks and workflows, rather

than what your data is doing
• Evolving towards more flexibility in task management than data

management

What We Tried- Dagster

• Python workflow engine (working towards supporting other languages
natively)

• Hybrid cloud options to let them manage the orchestrator
• A little slower to get started with than Prefect
• Layered concepts, move between task or asset focused as needed
• Easy to pass data between tasks
• Easy to surface metadata to the orchestrator
• ‘Data aware, but agnostic’

What We Didn’t Try

• Airflow - knew we wanted data aware orchestration, hard to pass data between tasks
• Argo Workflows - Largely language agnostic, very little awareness of what is happening

during a task
• Luigi - Seems to have run out of steam, not very data aware
• Ploomer - focused on orchestrating notebooks
• Kedro, Metaflow, Kubeflow - focused on ML uses
• Airbyte, dbt, Snowflake

• Often strongly data aware,
• but ‘n-dimensional data, what’s that?’ No awareness or ability to work with gridded

data
• Flyte also preferred tabular data

https://pixelastic.github.io/pokemonorbigdata/

https://pixelastic.github.io/pokemonorbigdata/

Where We Ended Up

Infrastructure - AWS
• EKS
• EFS
• S3
• System Manager -

Parameter Store
• SQS & EventBridge

Kubernetes
• Argo CD
• Ingress-Nginx
• Cert-Manager
• External Secrets

Operator
• Grafana
• Prometheus

Orchestrator
• Dagster
• Xarray
• Pandas
• Pydantic
• IOOS_qc
• Compliance

checker

Declaring The Mess - Ops & Assets

Ops/Graphs/Jobs
• Ops (operations) are assembled into

abstract graphs which can be reused
• Graphs can be customized into jobs
• Jobs can be started manually, or

triggered by schedules or sensors

Assets
• 1 asset often equals 1 file
• Ops or graphs of ops under the hood
• Can be assembled into jobs or

automatically materialized as
dependencies change

Declaring The Mess - Partitions

• Most data has some sort of natural division
• Calendar: Daily/Monthly
• Deployment: Buoy M0133

• Mapping between partitions
• Materialization policies let Dagster know

when to update a partition

Declaring The Mess -
Concurrency & Retries

• Network connections and servers can
be fickle

• If there is a hiccup, we want to retry,
but not bring down the server

• Limiting simultaneous external
connections makes other server
admins happier

Declaring The Mess -
Schedules vs Sensors

Schedules
• Cron, but you know what’s

going on
• Predictable timing of sources
• Often for sources that you can

ask for a specific subset

Sensors
• Waiting for events
• Unpredictable source timing
• Idempotent run_keys

Declaring The Mess -
Dataset metadata

• A common structure for
• Dataset services: ERDDAP/THREDDS/

Xpublish/STAC
• QC tests
• NetCDF attribute modification
• Links to sources

• Allows reusing ops & assets across datasets
• Designed to be the source of data for a CKAN

catalog

Reveal The Mess -
Asset & Job state

• Easy to see the overall state of jobs, and lots
of info available if digging in further

• Assets surface even more info that jobs
quickly

Reveal The Mess - Asset Checks,
Plots, & Metadata

• We are already exposing asset & op
metadata

• Currently working on more direct
QARTOD & Compliance Checker
integration

What’s Next?

• Move all legacy data pipelines into the new
system
• Retire messy old infrastructure

• Enhance pipeline resiliency
• Accommodate data changes from providers

• Improve/standardize documentation
• Transition from ops to assets?
• Water level extravaganza!
• Drive additional services

• CKAN
• Model viewer

Why is our system called Sea Eagle?

• System Inspiration from GLOS’s Seagull
• I spent a month during initial deployment intentionally playing tour

manager for a very lost Steller’s Sea Eagle

