
NERACOOS Infrastructure Update: 

A Steller view of problematic data

Alex Kerney

Dylan Pugh



Where Are We? 

You are here

All the data in 
the Gulf of 
Maine



Where We Started

• Cron*

• SEC - cron but less likely to start up correctly with the system

• Untracked, unmanaged, conflicting environments

• Observability = cranky emails

• Super rickety EC2 instances that were migrated from another provider


*if you are still in the world of cron, or other opaque orchestration 
systems, healthchecks.io and similar services will help you sleep better.

http://healthchecks.io


What Were Our Goals?

• Know what state the data is in

• Know what are workflows were up to

• Allow services and data pipelines to evolve at their own rate 

• Manage the blast radius, have a better idea of what failures will affect

• Have standard ways to describe, deploy, observe, and interact with 

parts of the system 



Essential vs Accidental complexity 

(aka The Mess)

Essential

• Dealing with other systems

• Derived data

• Services have to run 

somewhere

• Services & data needs to be 

publicly accessible

• Services & data have 

dependencies

• The ocean


Accidental

• Lack of observability/monitoring/

debug-ability

• Library dependency conflicts 

between workloads

• Un-declared data dependencies

• Network or server hiccups

• Cron timing mismatches

• Blurred lines between 

infrastructure and data 
complexity



Early Decisions - Kubernetes

• Docker containers enforce strong isolation and repeatable 
environments 


• Kubernetes enforces strong interfaces between workloads

• Lots of community, tooling, and knowledge

• Standard ways to see: 


• Which workloads are exposed to the internet

• The dependencies of a workload

• States of components



Early Decisions - Kubernetes

• Spent 4 years learning on smaller projects and clusters as a team

• Learned how to lean on provider and community tools


• Argo CD, Kustomize and Helm

• Grafana, Cert-Manager, External Secrets Operator


• How do our services react to being containerized, treated as cattle, and 
forced into playing with the cloud?

• ERDDAP & S3



What We Tried - Pachyderm

• Language agnostic, Docker & Kubernetes based execution model

• Workflows triggered by changes in data store structure

• Agnostic to type of data

• Very opinionated about structure of data store

• Really doesn’t want anyone else touching its data store

• Minimal observability of tasks or data

• Licensing and cost went from friendly to extremely expensive 



What We Tried- Prefect

• Python workflow engine

• Hybrid cloud options to let them manage the orchestrator

• Really quick to get going, and wrap your head around the concepts

• Easy to pass data between tasks

• UI is focused more on stats about your tasks and workflows, rather 

than what your data is doing

• Evolving towards more flexibility in task management than data 

management



What We Tried- Dagster

• Python workflow engine (working towards supporting other languages 
natively)


• Hybrid cloud options to let them manage the orchestrator

• A little slower to get started with than Prefect

• Layered concepts, move between task or asset focused as needed

• Easy to pass data between tasks

• Easy to surface metadata to the orchestrator

• ‘Data aware, but agnostic’



What We Didn’t Try

• Airflow - knew we wanted data aware orchestration, hard to pass data between tasks

• Argo Workflows - Largely language agnostic, very little awareness of what is happening 

during a task

• Luigi - Seems to have run out of steam, not very data aware

• Ploomer - focused on orchestrating notebooks

• Kedro, Metaflow, Kubeflow - focused on ML uses

• Airbyte, dbt, Snowflake


• Often strongly data aware, 

• but ‘n-dimensional data, what’s that?’ No awareness or ability to work with gridded 

data

• Flyte also preferred tabular data


https://pixelastic.github.io/pokemonorbigdata/ 

https://pixelastic.github.io/pokemonorbigdata/


Where We Ended Up

Infrastructure - AWS

• EKS

• EFS

• S3

• System Manager - 

Parameter Store

• SQS & EventBridge


Kubernetes

• Argo CD

• Ingress-Nginx

• Cert-Manager

• External Secrets 

Operator

• Grafana

• Prometheus


Orchestrator

• Dagster

• Xarray

• Pandas

• Pydantic

• IOOS_qc

• Compliance 

checker



Declaring The Mess - Ops & Assets

Ops/Graphs/Jobs

• Ops (operations) are assembled into 

abstract graphs which can be reused

• Graphs can be customized into jobs

• Jobs can be started manually, or 

triggered by schedules or sensors


Assets

• 1 asset often equals 1 file

• Ops or graphs of ops under the hood

• Can be assembled into jobs or 

automatically materialized as 
dependencies change



Declaring The Mess - Partitions

• Most data has some sort of natural division

• Calendar: Daily/Monthly

• Deployment: Buoy M0133


• Mapping between partitions

• Materialization policies let Dagster know 

when to update a partition



Declaring The Mess - 

Concurrency & Retries

• Network connections and servers can 
be fickle


• If there is a hiccup, we want to retry, 
but not bring down the server


• Limiting simultaneous external 
connections makes other server 
admins happier



Declaring The Mess - 

Schedules vs Sensors

Schedules

• Cron, but you know what’s 

going on

• Predictable timing of sources

• Often for sources that you can 

ask for a specific subset


Sensors

• Waiting for events

• Unpredictable source timing

• Idempotent run_keys



Declaring The Mess - 

Dataset metadata

• A common structure for 

• Dataset services: ERDDAP/THREDDS/

Xpublish/STAC

• QC tests

• NetCDF attribute modification

• Links to sources


• Allows reusing ops & assets across datasets

• Designed to be the source of data for a CKAN 

catalog



Reveal The Mess - 

Asset & Job state

• Easy to see the overall state of jobs, and lots 
of info available if digging in further


• Assets surface even more info that jobs 
quickly



Reveal The Mess - Asset Checks, 

Plots, & Metadata

• We are already exposing asset & op 
metadata


• Currently working on more direct 
QARTOD & Compliance Checker 
integration 



What’s Next? 

• Move all legacy data pipelines into the new 
system 

• Retire messy old infrastructure 


• Enhance pipeline resiliency 

• Accommodate data changes from providers


• Improve/standardize documentation

• Transition from ops to assets?

• Water level extravaganza!

• Drive additional services


• CKAN

• Model viewer



Why is our system called Sea Eagle?

• System Inspiration from GLOS’s Seagull

• I spent a month during initial deployment intentionally playing tour 

manager for a very lost Steller’s Sea Eagle


