

A co-design lab to synchronize and evolve technology for industry, ocean science, and conservation

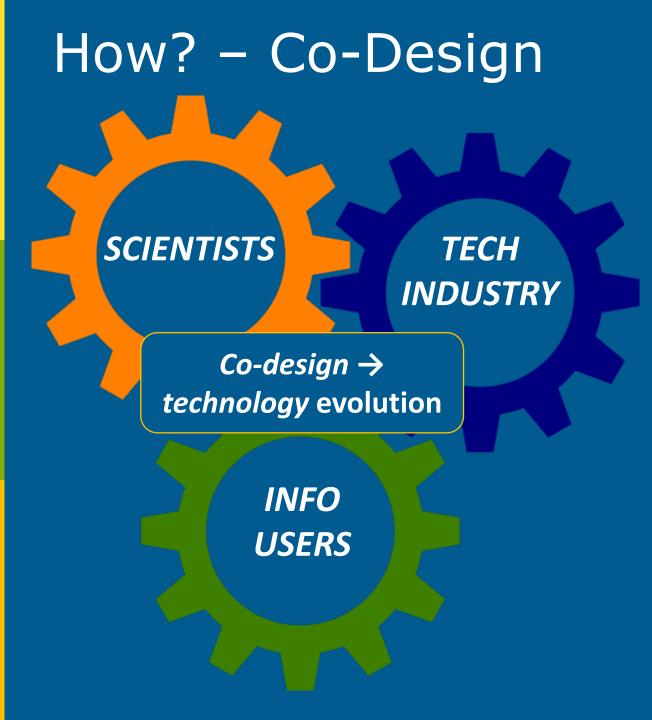
What is Synchro?

VISION

Synchro harnesses the power of emerging observation tools with collective user expertise to better understand, manage, and preserve ocean resources.

Synchro operates a co-design laboratory and ocean testbed for marine technology developers to test, improve, and evaluate systems in real-world conditions.

Why? A 'Valley of Death/Opportunity'



- Technology Readiness Levels define tech's evolution
- TRL 9 does not mean a wider adoption of tech
- Going beyond 9 is challenging
- Synchro is accelerating testing and evaluation, not funding development *per se*

TECHNOLOGY READINESS LEVEL (TRL)

ENT	9	ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT							
DEPLOYMENT	8	SYSTEM COMPLETE AND QUALIFIED							
DEPL	7	SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL ENVIRONMENT							
ENT	6	TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT							
RESEARCH DEVELOPMENT	5	TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT							
	4	TECHNOLOGY VALIDATED IN LAB							
	3	EXPERIMENTAL PROOF OF CONCEPT							
	2	TECHNOLOGY CONCEPT FORMULATED							
RE	1	BASIC PRINCIPLES OBSERVED							

NASA & https://www.twi-global.com/technical-knowledge/faqs/technology-readiness-levels

 Input during Synchro stakeholder meetings

 Include information users in co-design of testing and evaluation

 Demonstrate how new/emerging/evolving tech can meet their needs

 Data lifecycle planning with information users

Who? - Synchro Team

Jason Adelaars

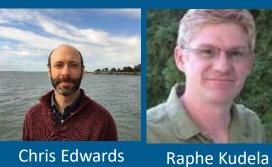
Fio Micheli

Jim Leape

Robert Dunbar

Eric Hartge

Mary Miller



Fred Bahr

Francisco Chavez John Ryan

Steve Cunningham Tom Connolly

Chris Edwards

Kendra Negrey

Corey Garza

Rob Bochenek

Collin Closek

Lucie Hazen

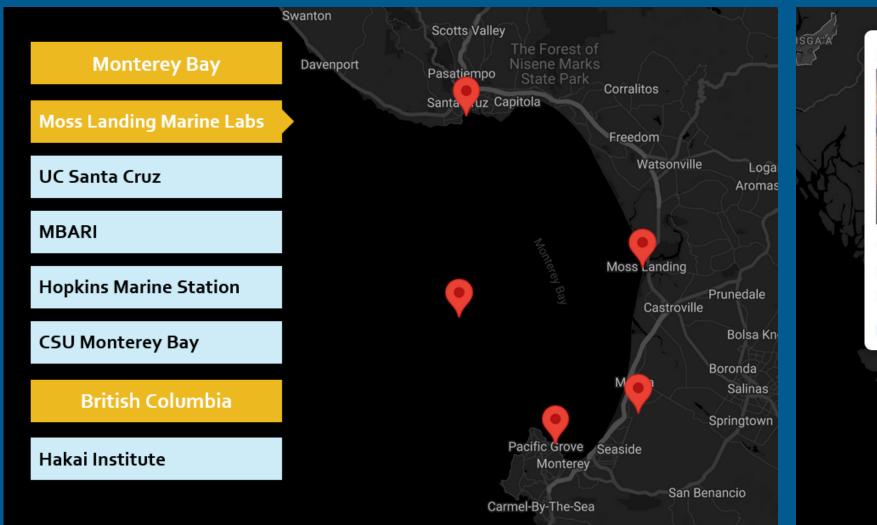
Katie Jewett

Who? - Growing a Synchro Network

Synchro

Synchro's Three Pillars of Evaluation

Three Pillars


- I. Testing/evaluation access for emerging technologies
- II. Low-cost tech procurement& evaluation

III. Case study for monitoring offshore wind impacts

Synchro aims to bridge the gap between R&D innovation and widespread adoption of ocean technology

How?- I. Testing & Evaluation Access

- Research Raft
- Flow-through laboratory
- Buoy

Read More

How?- I. Testing & Evaluation Access

- Directed Access will include dedicated and ready access though team support.
- Facilitated Access may be possible to more longer-lead time and complex facilities.

Moss Landing Marine Laboratories: R/V John H. Martin

- Monterey Wharf
- Aquaculture Facility

UW & CSUMB:

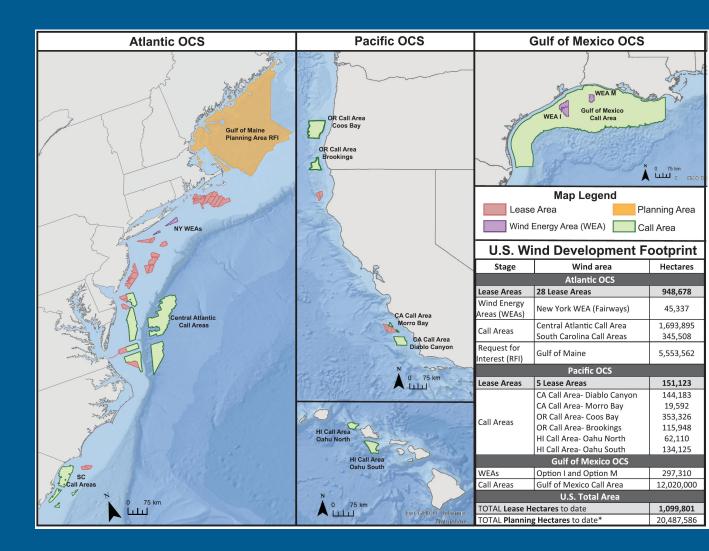
- NOAA Center for Coastal and Marine Ecosystems - REUs Aerial drone platforms Coastal watercraft Stanford University:
 - R/Vs Blue Serengeti and Dauphine, 17-foot whaler and several skiffs, Kelp forest

University of California, Santa Cruz

Santa Cruz Municipal Wharf Monterey Bay Aquarium Research Institute: Test (mini)mooring in Monterey Bay High-pressure test system Large seawater test tank with gantry Hakai Institute, British Columbia Raft, seawater lab, and buoy

How?- II. Low-Cost Tech

- ~\$500k low cost tech procurement in autumn
- Affordability (feasibility) is essential
- Open to all tech with focus on ecology and biology
- Co-design workshop late summer for final scoping
- Testing at existing Synchro facilities, or means for broader engagement through high volume procurement and dissemination
- Can also contribute to offshore wind case study where impactful/feasible

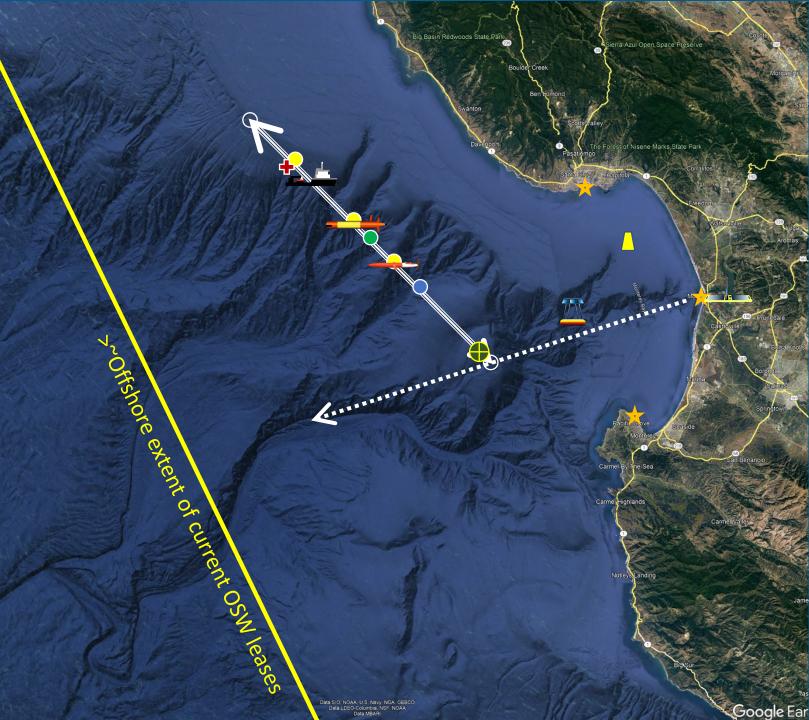


Butler, J., and C.M.L.S. Pagniello. 2021. Emerging, low-cost ocean observing technologies to democratize access to the ocean. *Oceanography* 34(4), https://doi.org/10.5670/oceanog.2021.supplement.02-35.

How?- III. Offshore Wind Case Study

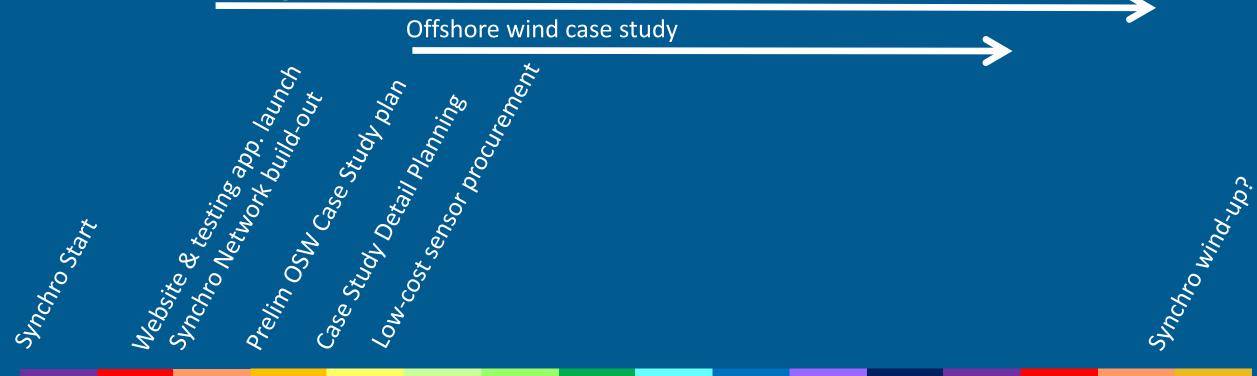
- \$1.25 M, 2 years field work beginning ~March 2024
- Tech-focused, but tensioned against emerging info priorities/questions
- Building on progress of CA Marine Protected Areas, Natl. Marine Sanctuaries Condition Reports, East Coast wind projects
- Offshore wind baseline and impact passement; focus on upwelling and its ecological implications
- Monterey Bay focus but scalable knowledge
- Co-designed w/ information users

<u>Assets</u> LRAUV / Planktivore = Ship / CTD = MARS hydrophone = \oplus UAV = 4 Synchro shore station = Synchro mooring =


Scale = 10 nm _____

Ship / CTD / eDNA sampling

- ~Upwelling max (movable) = ~Upwelling min (movable) = \bigcirc
- Cross validation (@vehicle) = 😑
- - Transect end point = \bigcirc


Other assets

M1 mooring = \overline{M} CeNCOOS glider line = Wire walker? Wave glider?

Timeline Elements

Testing & evaluation access

Synchro

Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2023				2024			2025				2026				

