

WORLD OCEAN DATABASE IN USE

Contributors: Martin Rutherford (Australian Hydrographic Office)

Greg Williams (RPS MetOcean) Matthew Iannucci (RPS NAm)

Michael Horsfall (RPS MetOcean)

Badema Grcic (RPS OST)

RPS 17 June 2021

Many ocean profile databases to choose from

- NCEI World Ocean Database (2005, 2009, 2013, 2018, ongoing)
 https://www.ncei.noaa.gov/products/world-ocean-database
- CSIRO Atlas of Regional Seas (2009, based on WOD2005) http://www.marine.csiro.au/~dunn/cars2009/
- International Quality Controlled Ocean Database (IQuOD v0.1, 2018) http://www.iquod.org/
- Others...

Overview of the World Ocean Database

- Database of measured ocean profiles temp, salinity, density, sound speed, etc
- 15 million profiles, each with up to 5000 data points (average 1500)
- Spanning 250 years 1772 to 2021 (ongoing)
- Various collection methods and instrument types
- Total records = approx. 85 billion point values
- Interim updates monthly, full releases every 5 years or so

Reducing data volume with QC filters

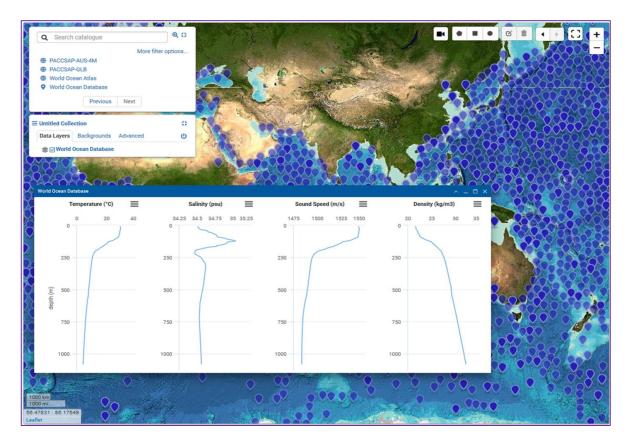
- Aim is to reduce data volume by discarding bad profiles (eg 1 point)
- Add ranking by data quality and content (e.g. temp + salinity vs temp only)
- Ranking includes instrument type and methodology (implied QA)
- General QC filters but also different QC per instrument type
- Output to NetCDF (full metadata) and PostGIS database (nomalized and indexed)

Types of additional QC

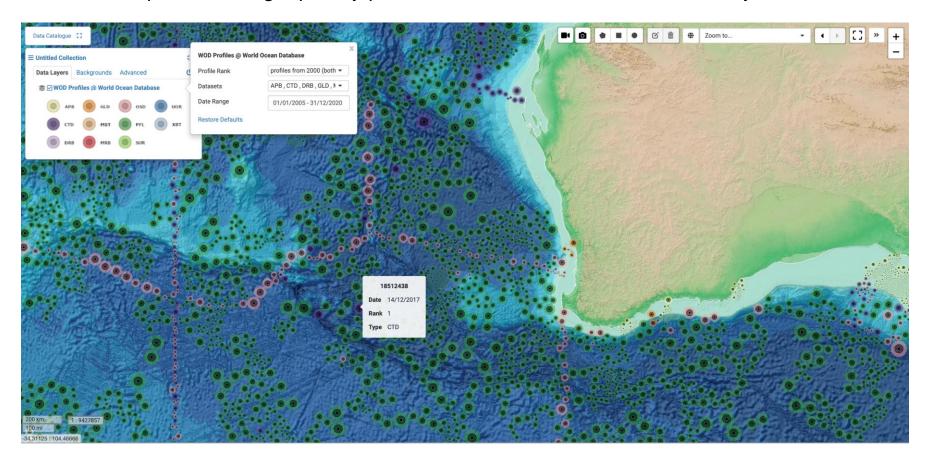
- Remove profiles with less than 2 points
- Remove duplicate profiles from the database
- Remove profiles already QC'ed as bad/suspect/poor (QCflag < 3)
- Use GEBCO 2019 bathymetry to remove profiles 'on land'
- Remove profiles in water depths of <5m
- · Remove profiles where depth is decreasing
- Remove profiles without a temperature
- Range-check temperature and salinity against physical limits (e.g. temp < -2C)

Reducing data volume with RDP

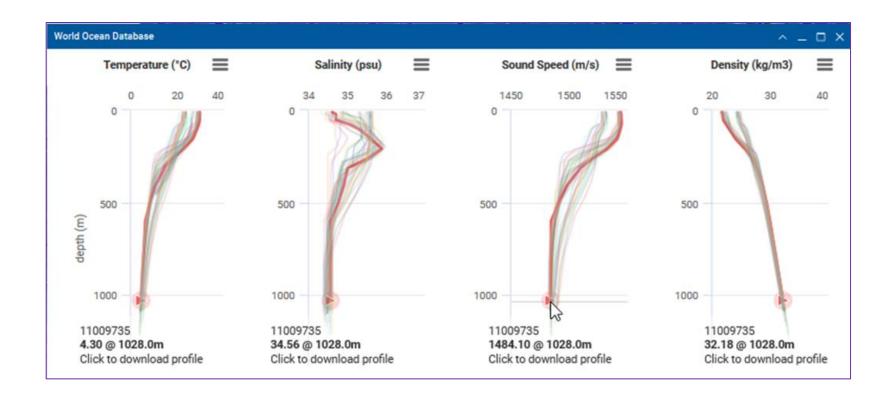
- Aim is to reduce data redundancy (e.g. high density sampling where no change)
- Keep all turning points and profile shape, start and end points
- · Do not create new data values that weren't measured
- Do not extrapolate beyond measurement values with spline or curve fits
- Use 'improved' version of Ramer-Douglas-Peucker algorithm
- Only keep profiles with 2 or more points (QC)
- RDP on Temperature, Salinity, Density, Sound speed independently
- Reduce profiles to 50 points or less
- Typical reduction of 30:1 with negligible reduction in quality


RDP Improvements

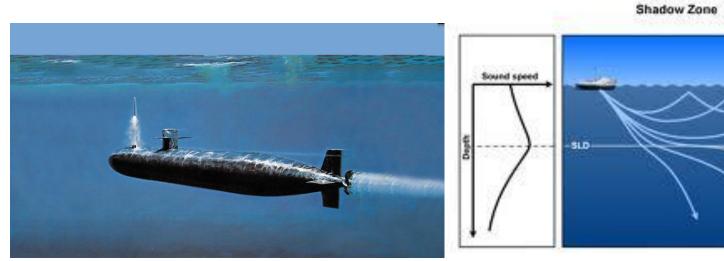
- Keep measured top and bottom points untouched
- Retain data points in sorted depth-order (allows immediate stop)
- Short-circuit halt at 50 points or less
- Iterative epsilon term refinement


Visualization Challenges

- High density coverage too many dots/samples for a map
- Need to distinguish different instruments, methods, age, quality, etc


Visualization

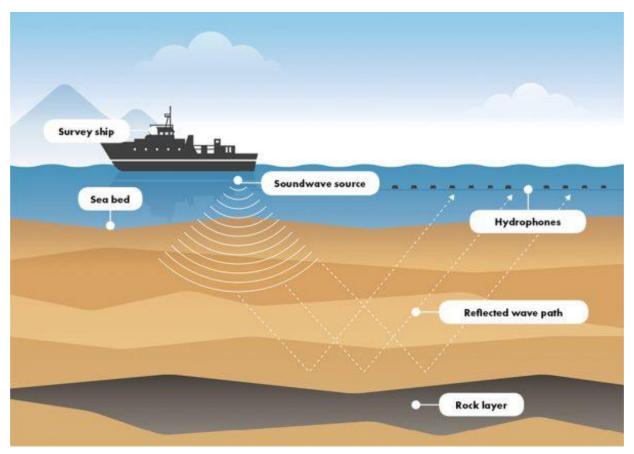
• Piximap decluttering – priority profiles are distinct and selectable at any zoom level


Visualization


- Classification distinguishing seasonal patterns, identifying representative profiles
- Zoomable profile plots, highlight individual profiles, download selected profile data

Applications

- Defense
 - Submarine stealthiness and comfort



©The COMET Program

Applications

 Seismic Survey – Accurate density information imperative for accurate measurements

Applications

• Environmental Impact Assessments

