The Global Ocean Observing System www.goosocean.org

The Global Ocean Observing System 2030 Strategy, governance, and NOAA Implementation

GOOS Vision

A truly global ocean observing system that delivers the essential information needed for our sustainable development, safety, wellbeing and prosperity.

David Legler (slides from Albert Fischer and others)

Director, OAR/Global Ocean Monitoring and Observing

GOOS 2030 Strategy

GOOS Mission

To lead the ocean observing community and create the partnerships to grow an integrated, responsive and sustained observing system. **The Global** Ocean Observing System 2030 Strategy

GOOS 2030 Strategy

Delivery across 3 target application areas

Climate

Operational services

Ocean health

GOOS 2030 Strategy

jcommops.org/ reportcard2019

Main in situ Elements of the Global Ocean Observing System

November 2019

Timeseries (OceanSITES) Ship based Measurements (SOT) **Other Networks** Interdisciplinary Moorings (326) Automated Weather Stations (253) HF Radars (270) 些 • Offshore Platforms (93) Repeated Hydrography (GO-SHIP) Manned Weather Stations (1279) Animal Borne Sensors (53) 些 \odot Research Vessel Lines (63) C Radiosondes (13) Sea Level (GLOSS) eXpendable BathyThermographs (34)

Profiling Floats (Argo)

- Core (3871) •
- Deep (106) •
- BioGeoChemical (364) • \circ
- Surface Drifters (1520) •
 - ٠

Data Buoys (DBCP)

- Ice Buoys (30)
 - Moored Buoys (333) •
 - Tsunameters (32) ▲

•

Tide Gauges (290)

Generated by www.jcommops.org, 13/12/2019

OceanObs'19 – what we heard

- **Planning for impact**: codesign of the observing system, endto-end, with stakeholders and users
- Core system integration: Democratization of data, best practice, integration of biological and ecological observations, and a growing emphasis on the coast
- Embracing innovation in technology and governance, and looking to the <u>#OceanDecade</u> as a vehicle for transformation

Governance breakout: formation of a working group to make recommendations

Developing/Implementing GOOS in NOAA OAR Global Ocean Monitoring and Observing

- Observations beyond US EEZ carried out across every line office of NOAA
- Purposefully designed global scale sustained ocean observing programs are a subset (largely NESDIS and OAR)
- Many programs contribute time/energy towards the global ocean observing enterprise (e.g. IOOS engagement with other GOOS Regional Alliances, ATN..)

David Legler, Director | David.Legler@noaa.gov

To provide high-quality long-term global observations, climate information, and products to researchers, forecasters, and other users to inform and prepare society for environmental challenges

The Value of Global Ocean Observing - Climate

The Value of Global Ocean Observing – Weather

Drifter Sea Level Pressure

The Value of Global Ocean Observing – Satellite Validation

Drifter SST

Land & Ocean Temperature Departure from Average Jul 2019

(with respect to a 1981–2010 base period) Data Source: NOAAGlobalTemp v5.0.0–20190808

OOMD Sponsored **Observing Networks** Argo, surface drifters, RAMA, PIRATA, Oceansites, GLOSS Tide gauges (int'l and US), SOOP/XBT, gliders, SOCONET, GO-SHIP, ... Arctic: DBO, Sea Ice Buoys, Saildrone

The Future – Partnership Opportunities

Regional Observing Planning

Tropical Pacific Observing System

Arctic Ocean Observing

Atlant **S**

The Future – Expansion Biogeochemistry and BIO

Biogeochemical Observing Platforms

- Argo: Oxygen, nitrate, pH, particulates *chlorophyll*
- OceanSITES/Moorings: pCO₂, oxygen, nutrients, particulates, phytoplankton, chlorophyll
- Gliders/Saildrone: Oxygen, chlorophyll, pCO₂
- **GO-SHIP:** DIC, TAlk, pH, oxygen, nitrate, phosphate, silicate, *chlorophyll, primary production*

Next steps: Incorporation of Biological Essential Ocean Variables (EOVs) (e.g., biological standing stock, diversity, biological rates and fluxes).

Newly Supported BGC Argo Initiatives \$4M

Four new projects were funded in 2019: Two projects partner with technology companies, Sea Bird Scientific and MRV, to refine biogeochemical (BGC) Argo float designs and deploy ~20 floats in the Tropical Pacific, an important region for understanding the ocean's role in the global carbon cycle.

Two pilot projects to deploy BGC Argo floats and use the resulting information to describe ocean chemistry changes in the California Current Large Marine Ecosystem and northwest Atlantic ocean both significant areas for fisheries.

Potential Foci of the Future...of interest to IOOS Global Ocean Observing and Monitoring (GOMO)

- Expansion of biogeochemical measurements
- Global-coastal ocean connections (e.g. boundary currents)
- Regional/basin-scale observing/prediction
- Extremes hurricanes, heat waves, etc.
- Deep
- Improving NOAA modeling enterprise (data accountability, ODA)

NOAA

Thank You!

EXTRA

Attributes: maturity level

🔵 Mature 🥚 Developing 😑 Pilot							
	Global	Sustained	Community	EOV / ECV	Data delivery	Mission / targets	Best Practices
Argo		\bigcirc		• 1			\bigcirc
DBCP moorings						\bigcirc	\bigcirc
DBCP drifters				• 1		\bigcirc	\bigcirc
SOT VOS						\bigcirc	\bigcirc
SOT SOOP							\bigcirc
GLOSS					\bigcirc		
OceanSITES		\bigcirc			\bigcirc	\bigcirc	\bigcirc
GO-SHIP		\bigcirc		• 1			
OceanGliders	\bigcirc	\bigcirc		• 1	\bigcirc	\bigcirc	\bigcirc
HF Radar	\bigcirc				\bigcirc	\bigcirc	
Animal Borne Sensors	0	0			0	0	0

FOCUS: Beyond the continental shelf

-150

-190

-120

-901

-201

0*

60*

120*

150*

The Value of Global Ocean Observing

Reference Measurements of the Water Column

I07N DIC (μmol kg⁻¹) Indian Ocean, Apr - Jun 2018

What's New

Wave Drifters

Directional Wave Spectra from drifters

Essential ocean variables:

- temperature, salinity, sea –level,
- currents/circulation,
- carbon/pH, sea-ice,
- air-sea fluxes, waves, ocean acoustics, and
- surface meteorology

Global Ocean Data: Foundation for Key Products and Services

World Ocean Database

Biogeochemical Argo

- \$4.2 New (FY19) funding2 regional pilot studies
- California Current
- Bermuda Atlantic Time Series

• 15-20 floats for TPOS2020

We need a step change in ocean observing

We will need :

- Growing integrated observing capacity
- Proliferation of output systems
- Improved connection from observations to users

We struggle to get the recognition and support required to build and sustain the ocean observing, data and information system the world needs.

Value chain

Requires feedback loops to ensure the system is fit for purpose and sustained