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Two Questions Posed by West Coast
COMT Group

1) What is the impact of the current observing
system on the CCS circulation?

* Observation impact studies (presented previously)
* Metrics: upwelling transport

undercurrent transport

CCS transport along specific section
eddy kinetic energy

thermocline depth

2) How well do existing assets “observe” the CCS?

* Array modes (NEW)




1) Impact of 4D-Var DA on the Model circulation

Time series of circulation
indices:

Reanalysis (blue)

Forward model w/no DA
(red)

Moore et al, 2017,
Progress in

Oceanography, 156,
41-60.
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1) Observation Impacts for Central California Coast
Upwelling Transport

0
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Annual average rms impacts on the 4D-Var increments I Aviso
(analysis minus background) for each observing platform MODIS
B AVHRR
Moore et al, 2017, Progress in Oceanography, 156, 41-60. - AMSR
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1) What is the impact of the current observing
system on the CCS circulation?
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* Metrics: upwelling transport
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CCS transport along specific section
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thermocline depth

2) How well do existing assets “observe” the CCS?

* Array modes (NEW)




2) Array Modes

* The degree to which the EOFs of B are captured by the
observing systems is described by the “array modes.”

* The array modes depend ONLY on the observation
locations, not the observation values.

X, =X, + OtCD

analy5|s background \

Bennett (1985) Weights Array modes

(depend on obs values)




2) Array Modes

Array modes can be thought of the

Examples the induced
currents and electric and
magnetic fields
associated a selection of
the leading eigenmodes
of the impedance matrix
of a perfectly conducting
sphere (adapted from
Chen and Wang, 2015).

oceanic analog of the 4D-Var circulation

"response” to observations




An Example Array
Mode

Think of these as the
circulation fields that are
“excited” by observation
values at the observation
points.

They can be used to identify
which parts of the model
space are “activated” by the
observations collected by an
observing system.

The array modes depend ONLY
on the observation locations

and NOT the measurement
values.

Moore et al., submitted.
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2) T5%and 14™ Array Modes for SST of the
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The mean and standard deviation of SST for the first and last members
of the array mode spectrum averaged over all 4D-Var cycles
(1980-2010). Also shown is the number of in situ observations which
appears to exert a strong control on the array mode structures (more
so that than satellite observations). Moore et al., submitted.




Summary and Conclusions

* Observation impact calculations have been used to quantify the
influence of the existing observing system on the CCS circulation
(Moore et al., 2017).

* Assessment of the ability of the Observation System to
“observe” the California Current System is based on array modes.

* Array modes depend on observation locations only, with
particular modes excited depending on observation values.

* Ability to “observe” is also dependent on background error
covariance matrix B, which is not very well known.

* In 30-year reanalysis, modes show an apparent relationship to in
situ observations despite the relative paucity of such obs.




2) The Importance of the Background Error
Covariance Matrix

X, =x, # BG' (GBGT + R)_1 (y—H(x,))
R T S S

obs operator cov matrix
background obs
error cov
matrix

background

Analysis increment

The analysis increment “lives” in the space spanned by B !!!

Therefore, to reduce errors in x,, the observing system must
effectively observe (directly via G or indirectly via GT) the
dominant EOFs of B.




2) An lllustrative Examples

/7

EOF1 of B satellite

Swath

(localized region of
high background
error variance) Glider path

The glider path does directly observe the region of high error background
error variance associated with EOF1 of B, so errors in this regions will be
corrected during data assimilation by the glider.




Biological intercomparison in the
California Current System: Objective

To compare performance of 3 different established
ecosystem models within a single physical circulation system

First 3 years, UCSC domain
Last 2 years, WCOFS domain
Focus on

— State variables

— Rate processes

Approach: A Latin Hypercube sampling of model rate
parameters to optimize models to one configuration

Summary statistics from 1-year (Monte Carlo) and 6-year
(rate process) runs

Collaborations: Edwards, Banas/MacCready, Chai




3 models

e Cascadia (Banas)
e CoSINE (Chai)
NEMURO (Edwards

Carbon, Silicate, Nitrogen Ecosystem Model
CoSINE, Chai et al. 2002
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A biogeochemical model for the US Pacific Northwest coast
(NS Banas et al, JGR, 2009,
KA Davis et al, in prep,

S Siedlecki et al, in prep)
microzooplankton

- dilution experiments (Lessard) &

uo1aioxa

phytoplankton mortality

- satellite and bottle chl (Kudela)

- POC:PON:chl stoichiometry (Kudela)

- biomass and species composition
from microscopy (Lessard)
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consumption data
Hartnett and Devol 2003)
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A challenge: Multiple fields of interest

* Phytoplankton biomass
e Zooplankton biomass
* Primary production

* Oxygen

e pH

* Nutrients

e Stratification

* Export




Optimization

The cost function J(q) summarizes model
performance in one number

J((g) _ 1 Jnut(e) 1 Jcoastal(e) 1 Joffshore(e) 45°N
3 Jnut(eref) 3 Jcoastal(eref) 3 Joffshore(eref)

A 7 NG 7

NO3-based Chl-based

40°Nf
Measures model-observation misfit as a functionj

of select biological parameters q

Based on real satellite Chlorophyll and
climatological nitrate from WOA

35°N

Individual cost contributions are normalized by
the reference simulation with parameters g, 130°W
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Summary: Intercomparison of Cascadia,

NEMURO and CoSiNE within UCSC CCS model

State variables:

NEMURO has lowest RMS error against satellite-derived chl and climatological
nitrate

CoSiNE leaves high nitrate near surface, cannot be removed through
optimization

Cascadia arguably suffers in terms of state-variable metric due to only one
phytoplankton

Rate process investigation reveals

CoSiNE exhibits grazing-limited production, limiting nitrate uptake

NEMURO and Cascadia are more consistent with observations, showing a shift
from high phytoplankton growth in nutrient-replete conditions, shifting to a
growth/grazing balance in low nutrient conditions

NEMURO rate processes reasonably span range of available observations

Cascadia does not yield high phytoplankton growth portion found in
observations




WCOFS Domain

Configure realistic but coarse resolution
(4km) WCOFS

— 1/8 cost of full WCOFS 2km grid
— Realistic mean and mesoscale
— No tides

— No precipitation

— Norivers
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Example log,,(Monthly Average Surface Chl-a)
April and July, 2014
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Time series log,,(Surface Chl)
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Example log,,(Monthly Average Surface Nitrate)
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Summary: Intercomparison of Cascadia,
NEMURO and CoSiNE within WCOFS 4km

 Cascadia
— Right magnitude nearshore stock
— Low offshore stock
— Low offshore nutrients

* CoSINE
— Right magnitude nearshore and offshore stock
— High nutrient concentrations

 NEMURO
— Low nearshore stock
— Right magnitude offshore stock
— Low offshore nutrients




Development

Common issues

Iron limitation in northern
part of domain

Uncertain C:Chl ratio
2014 anomalous year

Sensitivity to advection
scheme

Spinup

Work plan involves all parties

Operate with physical circulation
from “typical” period (2013)

Add one year spinup (2012)

Distribute tuning and optimization
effort among expert groups

Groups can add particular
enhancements (e.g., C:Chl, oxygen)
available now to those models




observations

NEMURO free simulation NPZD free simulation
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Long-term vision:
Have performed 4D-Var data assimilation using
NPZD and NEMURO models.

Evaluation for Year 2000 in UCSC domain
Satellite Chl Observations

NPZD DA

NEMURO DA




