Life on Earth has historically been planned on the expectation of a fairly predictable and consistent climate. As the Earth’s climate begins to show greater variability with warmer temperatures, extreme precipitation, sea level rise, and ice cap melting, it is becoming increasingly clear that the ability to monitor and predict climate change is of vital importance to human society.

The U.S. must learn to cope with an increasing rate of change in environmental conditions. The Ocean Research and Resources Advisory Panel states that a fully implemented Integrated Ocean Observing System (IOOS®) will offer data from the ocean, coasts, and Great Lakes to determine trends in climate change and predict future change.

Impacts of Climate:
The Joint Ocean Commission released a report on ocean priorities to the Obama Administration stating that the ocean profoundly influences the planet, our lives, and livelihoods. Two fundamental changes in the ocean are of great concern: increasing acidity and ocean water temperature.

Oceans drive our climate, functioning as a reservoir for carbon dioxide and heat. Ocean circulation systems affect the amount of carbon dioxide the ocean stores, changing the acidity, which can negatively impact the health of marine ecosystems, including coral reefs, zooplankton, and important fish and shellfish. Ocean temperature increase and its effect on ocean circulation affects weather patterns, seasonal changes, agricultural production, and transportation activities. Increasing temperature of our ocean waters can create shifts in ocean circulation patterns and cause record melting of Arctic ice.

Climate change will affect society through the loss of property in coastal locations due to sea level rise and increased coastal storm intensity. In addition, society will see losses in fishery resources from ocean acidification, temperature and circulation changes, outbreaks of harmful algal blooms, and changes to weather and precipitation patterns that in turn lead to drought and flooding.

The important point is that these impacts will not be within the realm of normal past variability and therefore will be beyond our current capacity for dealing with intense storms, floods, crop loss, property loss, and drought.
Although the ocean has the potential to store 1000 times more heat than the atmosphere, measureable increases in ocean heat lead to sea temperature increases. IOOS data, specifically temperature, is used in models to predict and forecast sea level rise which helps determine the impacts of climate change.

IOOS® Benefits:
IOOS will provide the observing systems to collect the ocean, coastal, and Great Lakes data, which will help produce better and faster forecasts and predictions such as expected sea level rise and warnings for coastal communities. These observing and information systems reside in dozens of federal and state agencies, universities, and private industries and are tailored to the individual missions of those who fund them. To avoid isolated, individual systems, the United States needs to integrate all of these assets. IOOS was developed to evolve existing programs into a unified structure that provides a seamless delivery of ocean and coastal information and predictions.

Internationally, IOOS is the U.S. contribution to the international Global Ocean Observing System (GOOS). GOOS is the ocean and coastal component of the Global Earth Observation System of Systems (GEOSS).

The role of IOOS in climate monitoring and forecasting will expand in the future. IOOS will provide long-term, high-quality data to discern trends and interpret data for predictions needed to determine the extent of climate change now and in the future. For example, IOOS captures and combines a wide variety of observations to produce more accurate and timely trends and forecasts.

This information will enable decision makers to understand and respond to ongoing and anticipated changes, including flooding from sea level rise, and the effects of rain, urban runoff, coastal development, and storm strength.

IOOS data and information will serve to strengthen and improve our forecasts of trends in predicted climate change. Having these capabilities and maintaining them long-term will highlight large scale changes in climate and improve the ability to understand and adapt to such changes.

History tells us that the future always holds surprises. We can maximize our ability to manage the effects of the changes ahead only if we have the needed data, as well as information development and forecast systems in place to improve safety, enhance our economy, and protect our environment.

For More Information:
U.S. IOOS
1100 Wayne Avenue, Suite 1225
Silver Spring, MD 20910
Phone: (301) 427-2420
www.ioos.noaa.gov

OR

NOAA Climate Observation Division
1100 Wayne Avenue, Suite 1202
Silver Spring, MD 20910
Phone: (301) 427-2461
www.climate.noaa.gov/about_climate/index.jsp

This **dead sea urchin** is representative of the thousands of sensitive coral species that can die when water temperatures reach above normal tolerance levels. When an entire coral reef begins to die it is referred to as bleached and requires years to rebuild.