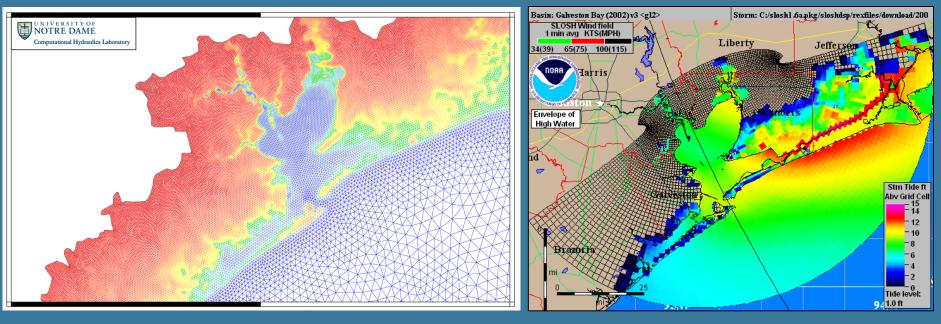
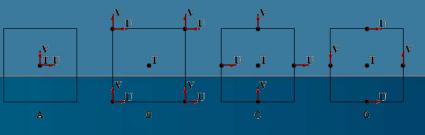

IOOS Catalog and Service Requirements to Support Catalog-Driven Workflows

Rich Signell (USGS-CMG) Filipe Fernandes (SECOORA) Kyle Wilcox (Axiom Data Science) Andrew Yan (USGS-CIDA)

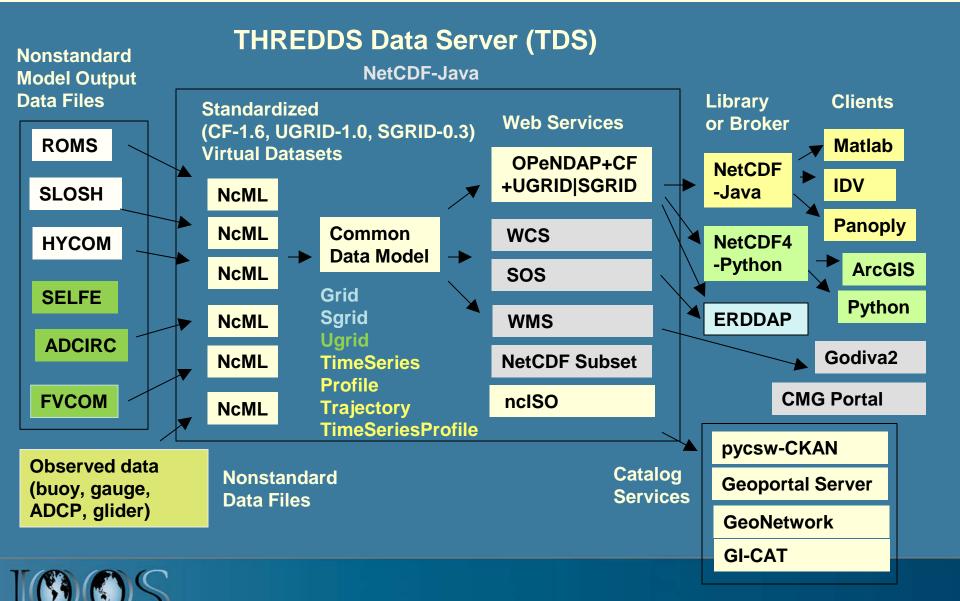

Regional IOOS DMAC Meeting: Silver Spring, 6/2/2016

Why not just use ERDDAP?

ERDDAP supports uniform grids, but doesn't support:


Unstructured Grids (ADCIRC, FVCOM, SELFE, ...)

Curvilinear Grids (ROMS, SLOSH, HYCOM...)


Use OPeNDAP +CF, +UGRID conventions

Use OPeNDAP +CF (and +SGRID if staggered)

IOOS Model Data Interoperability Design

ncISO (NetCDF to ISO)

- https://github.com/Unidata/threddsIso
- Included in TDS 4.2.4+, but must be enabled
- Handles time, naming authority, properly in version 2.8 (and in TDS 4.6.1+)
- Standalone ncISO (http://www.ngdc.noaa.gov/eds/tds) is still at version 2.3
- Kevin O'Brien, Roland Schweitzer & Unidata team are working on integration of stand-alone ncISO into THREDDS ncISO (adding command line capabilities)

pycsw (Python-based CSW)

- https://github.com/geopython/pycsw
- Need version 1.10.3 or higher to support query by ServiceType (like OPeNDAP or SOS)

Catalog workflow for TDS data

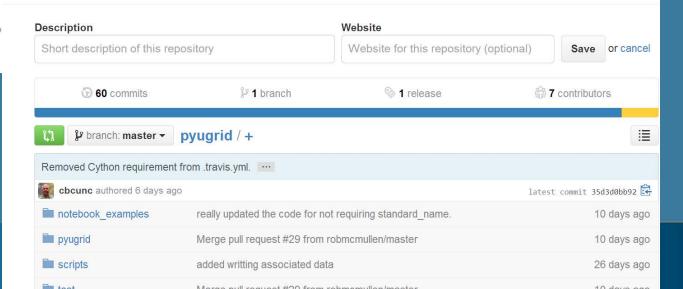
- At least every day, providers update ISO metadata records in a WAF (web accessible folder):
 - Crawl THREDDS catalogs using Python script, extracting ISO metadata from ncISO TDS services
 - Crawl THREDDS catalogs using standalone nclSO jar file, generating ISO metadata from OPeNDAP services
- At least every day, use script to have pycsw harvest ISO metadata from list of WAFs, eliminating records no longer in WAFs

Standardized access to Unstructured Grid data

V: Array of 32 bit Reals [time2 = 0..383][sigma = 0..10][node = 0..592760]

time2:	sigma:	node:		
long name: Northward Water Velocity				
missing value: -999.				
standard name: northward sea water velocity				
mesh: selfe mesh				+
location: node				

Unwatch - 8


selfe_mesh: 32 bit Integer

cf_role: mesh_topology	
topology_dimension: 2	
node_coordinates: x y	
<pre>face_node_connectivity:</pre>	ele

selfe mesh = 🔹

ugrid-conventions

Unstructured Grid Metadata Co Updated on Apr 14

SGRID Conventions: github/sgrid

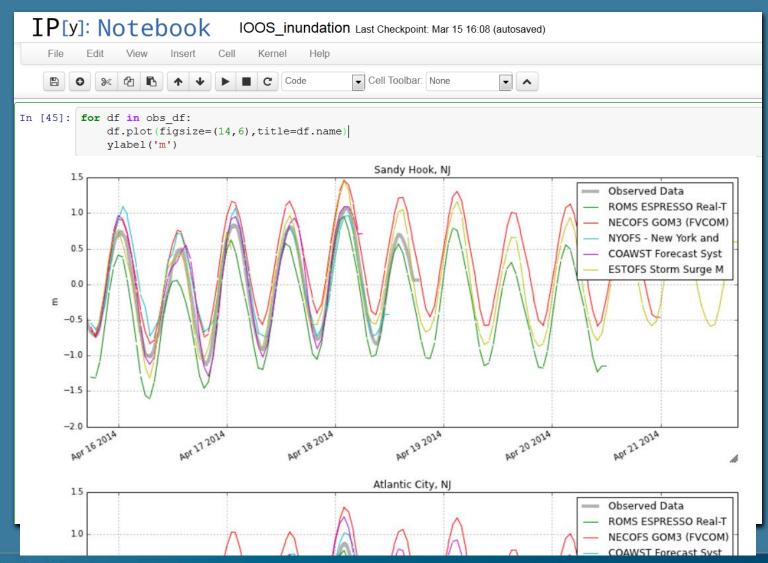
← → X n 🔓 GitHub, Inc	. [US] https://github.com/sgrid/pysgrid		
This repository Search			
sgrid / pysgrid			
Python tools for sgrid — Edit			
3 294 commits	₽ 1 branch		
្ត្រា ្រ្វី branch: master 🗸	pysgrid / +		
Merge pull request #53 from	ayan-usgs/master 🚾		
ayan-usgs authored 17 ho	urs ago		
pysgrid	added notebook example		
.gitattributes	added .gitignore and .gitattributes file		
.gitignore	Use setuptools for packaging		
.travis.yml	Append test requirements onto norm		
MANIFEST.in	Use setuptools for packaging		
README.md	more readme changes		
requirements-test.txt	Append test requirements onto norma		

v:grid = "grid" ; // SGRID attribute v:location = "edge2" ; // SGRID attribute float zeta(ocean_time, eta_rho, xi_rho); zeta:long name = "free-surface"; zeta:units = "meter" ; zeta:time = "ocean_time" ; zeta:coordinates = "lat_rho lon_rho"; zeta:grid = "grid" ; // SGRID attribute zeta:location = "face" ; // SGRID attribute // SGRID variable int grid ; grid:cf_role = grid_topology grid:topology_dimension = 2 ; grid:node_dimensions = "xi_psi eta_psi" ; grid:face dimensions = "xi rho: xi psi (padding: both) eta rho: eta psi (padding: grid:edge1_dimensions = "xi_u: xi_psi eta_u: eta_psi (padding: both)" ; grid:edge2_dimensions = "xi_v: xi_psi (padding: both) eta_v: eta_psi"; grid:node_coordinates = "lon_psi lat_psi" ; grid:face_coordinates = "lon_rho lat_rho"; grid:edge1_coordinates = "lon_u lat_u" ; grid:edge2_coordinates = "lon_v lat_v" ; grid:vertical dimensions = "s rho: s w (padding: none)";

// global attributes:

```
:Conventions = "CF-1.0" ;
:title = "ROMS/TOMS 2.2 - Adria02 Uber Run" ;
```


faces1: nodes (padding: none) 1 1 2 2 3 3 4faces2: nodes (padding: low) 1 1 2 2 3 3 4 4faces3: nodes (padding: high) 1 1 2 2 3 3 4 4faces4: nodes (padding: both)

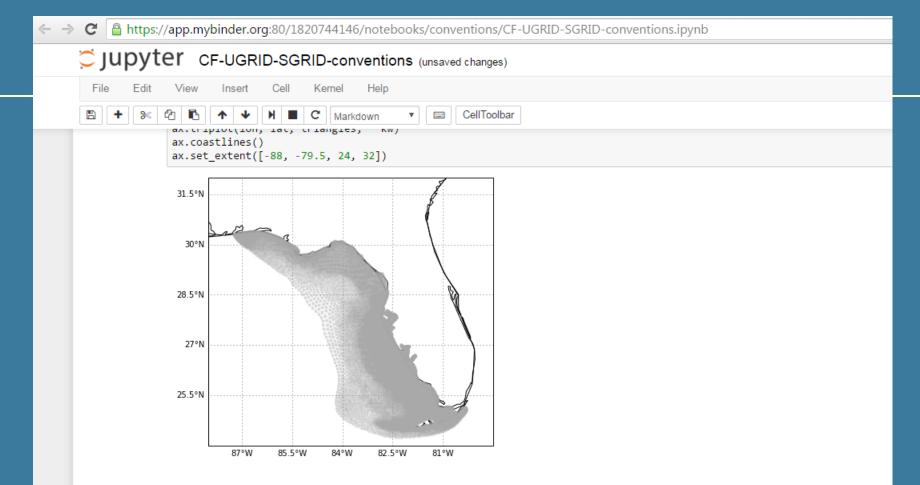

WRF (ARW version)

The WRF-ARW also uses a C-grid. In this ca models could also result in 3D grid topologies structured (layered) grid in the vertical, but the

It might be interesting to verify the result for W

```
netcdf wrfout_v2_Lambert {
  dimensions:
```

Automated model comparison



Notebook Demos

 ← → C GitHub, Inc. [US] https://github.com/ioos?utf8= ✓ &query=note Apps DOI Apps (T&A) Terria Map M Inbox (8,522) - rsi DEPARTMENT OF OR Rich's Tiddlyspace & usgs_a 	II 🔾 cdi
This organization Search Pull requests Issues Gist	
US Integrated Ocean Observing Sys Technical documentation and software supporting IOOS Data Management and Co The http://ioos.github.io People 46 Teams 21 Settings	
Filters - Q note New repository	People
notebooks_demos Jupyter Notebook ★ 0 № 1 Notebook demonstrations and examples Updated 9 days ago	

← → C 🔒 GitHub, Inc. [US] https://github.com/ioos	/notebooks_demos		5
🗰 Apps 🕒 DOI Apps (T&A) 🦰 Terria Map ष 🎇 Inbox (8	3,522) - rsi 👖 DEPARTMENT OF 🧔) Rich's Tiddlyspace 🛯 usgs_all 📿	cdi
ioos / notebooks_demos Code Issues 4	equests o 📧 Wiki	💽 Unwate	ch - 5 ★ Star 0 % Fork 1
Notebook demonstrations and exam	ples — Edit		
P 6 commits	₽ 1 branch	♥ 0 releases	क्षे 1 contributor
Branch: master - New pull request		Create new file Upload file	s Find file Clone or download -
Cocefpaf Merge pull request #6 from oc	efpaf/ad_badge …		Latest commit 51b7080 9 days ago
conventions	Parsing conventions with Pythor	n	9 days ago
	Initial commit		23 days ago
README.md	Add binder badge		9 days ago
environment.yml	Parsing conventions with Pythor		9 days ago
index.ipynb	Parsing conventions with Pythor	n	9 days ago
E README.md			
IOOS demon	nstrations and	examples not	ebooks

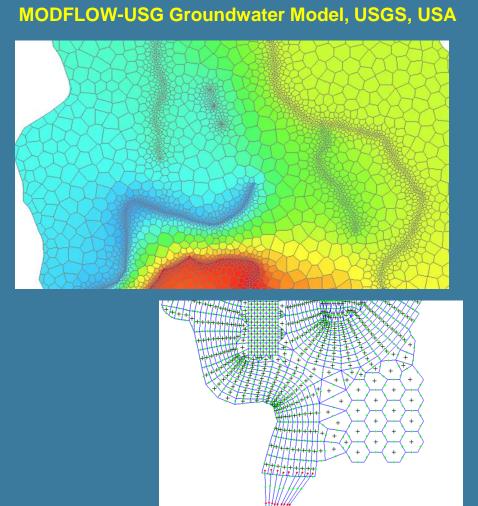
There is some effort to integrate pyugrid into iris to augment the cube object to be both CF and UGRID aware by adding convenience plottin methods with pyugrid. You can see the full pyugrid example <u>here</u>.

SGRID-0.3 (pysgrid)

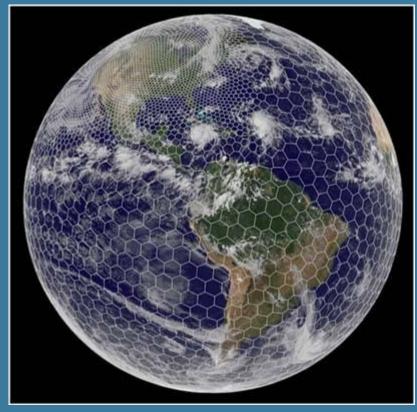
http://sgrid.github.io/sgrid/

In [12]: import pysgrid

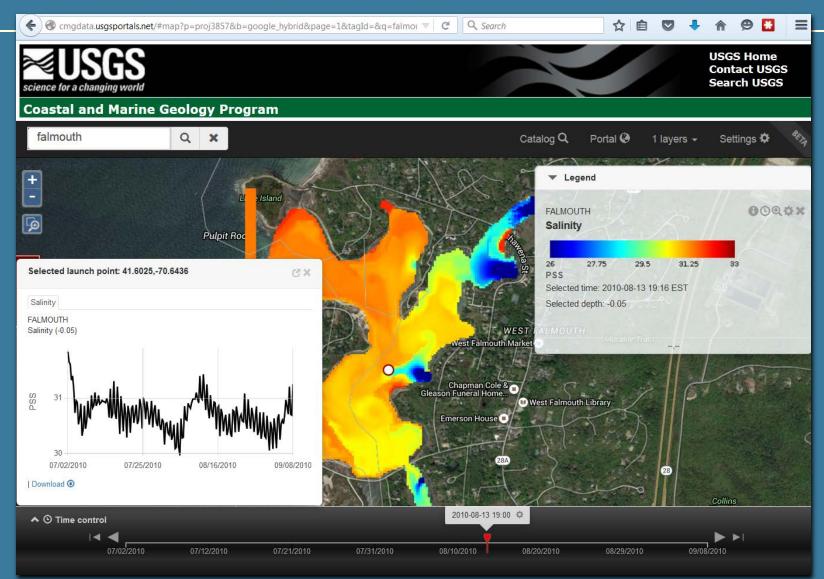
url = ('http://geoport.whoi.edu/thredds/dodsC/clay/usgs/users/'



Improving Reliability


- Monitor services
- Using conda and conda-forge for supporting the IOOS python environment
- Use Docker for deploying services: THREDDS Data Server, ERDDAP, pycsw, sci-wms

Next-Generation Models

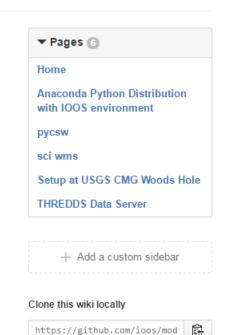

MPAS Global Forecast Model, NCAR/LANL, USA

Delft-Unstructured Ocean/Estuary/River Model (Deltares, Netherlands)

USGS Model and Time Series Portal

Instructions on IOOS GitHub

← → C 🖺 GitHub, Inc. [US] https://github.com/ioos/model-data	a-framework/wiki	5
🗰 Apps 🕒 DOI Apps (T&A) 🕋 Terria Map 🛛 🏹 Inbox (8,522) - rsi	💶 DEPARTMENT OF 🛛 💿 Rich's Tiddlyspace 📀 usgs_all 🕥 cdi 🚽	
This repository Search	Pull requests Issues Gist	≰ +- 👿-
📮 ioos / model-data-framework	O Unwatch → 6	★ Star 1 % Fork 0
<> Code ① Issues 2 ∬ Pull requests 0	🗉 Wiki	
Home Rich Signell edited this page on Mar 14 · 9 revisions		Edit New Page


The IOOS Model Data Framework

Background

The IOOS model data framework provides standardized search, access and use of model data. The framework consists of standardized metadata and data services, which could be delivered with a number of different software components, but here we describe one collection of components that work: THREDDS Data Server, pycsw, sci-wms and Anaconda Python Distribution.

Modeling Group System Adminstrators

System administrators should install this collection of free software packages that will provide standardized data, image and catalog services used by the tools described in the section below.

🛃 Clone in Desktop