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Skillful application need good process understanding. Black box
Is likely not providing useful predictive capabilities with known
error statistics.

Practical considerations for operational use (computational cost,
robustness, data needs). Different models will be appropriate for
the different uses.
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Why is Coral Dying at East Flower Garden Bank?

14
Y shere Normally the reefs of Flower Garden Banks
National Marine Sanctuary (FGBNMS) are
2 considered to be the healthiest in the region,
but now scientists from around the world are
G+l trying to figure out what’s behind a

mysterious event in the area that’s killed
m thousands of coral colonies and associated
reef invertebrates.

Email On July 25, sport divers on the M/V Fling reported
green, hazy water, huge patches of ugly white mats on
corals and sponges, and dead animals littering the
bottom at East Flower Garden Bank, buoy #4. The
charter captain notified FGBNMS and the U.S. Bureau
of Ocean Energy Management (BOEM) researchers,
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Hypoxic area: full biogeochemical
models
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Differences in hypoxia predictions could be due to differences
in model physics and/or biology.

Need to disentangle both effects.



Using simple oxygen parameterization by Yu et al. (JGR 2015)
(same in all models) includes air-sea gas exchange, water column
respiration (WR) and sediment oxygen consumption (SOC)
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Find the odd one out!

oxygen
consumption vertical

in the water stratification
column

oxygen
consumption by
the sediment

bottom drag
parameter

vertical
attenuation
of shortwave

radiation
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Oxygen concentration is controlled by the balance of
oxygen supply and oxygen consumption.

In these simple hypoxia models water column
respiration is equal among all models, but sediment
oxygen consumption depends on bottom water
temperature.
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1. Effects of bottom water temperature
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2. Effects of oxygen supply
It’s not overall stratification strength.
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2. Effects of oxygen supply
It’s not overall stratification strength.
Differences in BBL (hypoxic layer = BBL).
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Bottom temperature (°C)
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kd = a1+ a2*H + a3*S + a4*T + a5*LON + a6*LAT

Parameterized Kd

a1=-0.421962219 (m™)
a2 = -0.0000338347 (m)

a3 = -0.0478813776 0o

a4 = -0.0145770602 (°C) FY e

a5 = 0.005204748 (°W, negative) SN

a6 = 0.1058210282 (°N) ° Kd from MODIS

A minimum Kd is set to 0.027 m™! as determined by Smith and Baker (1978) for clear ocean waters.
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Effects of model physics on hypoxia simulations for the
northern Gulf of Mexico: A model intercomparison
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Abstract A large hypoxic zone forms every summer on the Texas-Louisiana Shelf in the northern Gulf of
Mexico due to nutrient and freshwater inputs from the Mississippi/Atchafalaya River System. Efforts are
underway to reduce the extent of hypoxic conditions through reductions in river nutrient inputs, but the
response of hypoxia to such nutrient load reductions is difficult to predict because biological responses are
confounded by variability in physical processes. The objective of this study is to identify the major physical
model aspects that matter for hypoxia simulation and prediction. In order to do so, we compare three
different circulation models (ROMS, FVCOM, and NCOM) implemented for the northern Gulf of Mexico, all
coupled to the same simple oxygen model, with observations and against each other. By using a highly
simplified oxygen model, we eliminate the potentially confounding effects of a full biogeochemical model
and can isolate the effects of physical features. In a systematic assessment, we found that (1) model-to-
model differences in bottom water temperatures result in differences in simulated hypoxia because
temperature influences the uptake rate of oxygen by the sediments (an important oxygen sink in this
system), (2) vertical stratification does not explain model-to-model differences in hypoxic conditions in a
straightforward way, and (3) the thickness of the bottom boundary layer, which sets the thickness of the
hypoxic layer in all three models, is key to determining the likelihood of a model to generate hypoxic
conditions. These results imply that hypoxic area, the commonly used metric in the northern Gulf which
ignores hypoxic layer thickness, is insufficient for assessing a model’s ability to accurately simulate hypoxia,
and that hypoxic volume needs to be considered as well.
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But for nutrient load reduction scenarios a full
biogeochemical model is needed.
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Goal: Multi-model estimates of
necessary nutrient load reductions
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How far do N and/or P loads have to be reduced in order to affect
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Nutrient reduction strategies in the Mississippi Basin have long
focused on N assuming it is the ultimate limiting nutrient while
P is only limiting in a proximate sense.

proxeiemate | praksemit | immediate

uletiemate | 'sltomit | final

In Ecology (after Tyrrell 1999):

The proximate limiting nutrient is the one that is locally
(or temporarily) limiting Primary Production (PP). Its
addition will immediately enhance PP.

The supply of the ultimate limiting nutrient determines
system productivity over long time scales.
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DIN
or PP

Implications of P limitation

® delays utilization of DIN and
Induces spatial shift

® reduces magnitude of PP
peak but results in elevated
PP in larger area/over longer
time period

D | | And hypoxia?

® could intensify (Pearl 2004:

Neuse River estuary; Conley
et al. 2009: Baltic Sea)

e could be reduced (Laurent &
Fennel 2014)
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Previous estimates to reach 5,000 km? hypoxic area

Taskforce (2001) 30% N load reduction
Scavia et al. (2003) 40-45% N load reduction
Scavia & Donnelly (2007) 37-45% N load reduction

or 40-50% P load reduction

Greene et al. (2009) model 11 50% N load reduction
or 42% N&P load reduction

model 12 >100% N load reduction
or 42% N&P load reduction

Forrest et al. (2011) UEDC 68% N load reduction
UEN >100% N load reduction
Scavia et al. (2013) 62% N load reduction
Here 78% +/- 30% N load reduction

87% +/- 36% P load reduction
71% +/- 29% N&P load reduction
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PP in the river plume is P-limited during spring and early
summer, but P is limiting only in the proximate sense.

N is the ultimate limiting nutrient determining overall
productivity.

Despite this, reductions in P load would reduce hypoxic
conditions significantly.

The sensitivity of changes in hypoxic extent to nutrient load
reductions is variable.

The simulations suggest that reductions upwards of 70% are
necessary to reach 5,000 km?2.

Proportional reductions of N and P would be the best strategy.
N reductions would be the next best option.

Are these ROMS results robust? What do the other models
predict?



