Nanolanders: New Access to the Sea

NOAA Town Hall

Ocean Innovation and Partnerships

Kevin Hardy, SIO 1972-2011 (retired) Global Ocean Design, San Diego, CA

Benthic Landers:

Untethered free vehicles that travel down and back to the seafloor. One of the earliest underwater vehicles, scientific applications go back to the 1930's.

Nanolanders have Inherent stability when

Buoyancy is high

Weight is low

Nanolanders are simple to launch.

Even from a small fishing boat.

Can sling one over the side.

In the early days, citizen scientists shared their ships.

R/V Loma, 1905

R/V Alexander Agassiz, 1907-17

They still do.

Home Yachts - Builders - Charter & Cruising - People - Events - Photo Galleries Vide

come to experience Mangusta

YACHTS MIAMI BEACH (11/15 Feb 2016), Collins Avenue, RAMP 24

Calling All Citizen Scientists: SeaKeepers, Scripps Need You

Payloads

SBE 37-SI MicroCAT C-T (P) Recorder

POLYSTYRENE SPHERE HOUSINGS

Advantages of polystyrene

- 1. Buoyancy and Housing
- 2. Durable and shock-proof
- 3. Won't spall
- 4. Threaded holes possible
- 5. Machines easily
- 6. Maybe tapped, bonded, welded
- 7. Invisible to radio waves
- 8. Invisible to magnetic force
- 9. Corrosion proof
- 10. o-ring seal

Disadvantages of polystyrene

- Sensitive to certain hydrocarbons
- 2. Opaque
- 3. Implosion

GLASS SPHERE HOUSINGS

Advantages of Glass

- 1. Buoyancy and Housing
- 2. Clear
- 3. Penetrations possible
- 4. Polish for camera housing
- 5. Invisible to radio waves
- 6. Invisible to magnetic force
- 7. Corrosion proof

Disadvantages of Glass

- 1. Can chip easily
- 2. Spalling
- 3. Life cycle uncertain
- 4. Operator skill
- 5. Implosion force

Traps and samplers can be rigged to operate remotely

Sensors

```
CTDs -
     conductivity
     temperature
     & depth
Cameras
current meters
DO
pН
Fluorometer
transmissometers
geomagnetic compasses
Seismographs
others
```

Lander operations flashing light 10 m polypropylene line Wife radio beacon

Dual release system

Nanolander Release Design

Acoustic Link

Edgetech

Teledyne Benthos

Desert Star

...and others

Nanolander Release Design

Countdown timer

Nanolander Release Design Galvanic Time Release

WATER TEMP	2C 3 0F	+2C 35F	4C 40F	70 45F	100 50F	13C 55F	160 60F	18C 65F	21C 70 F	24C 75F	27C 80F	Time Variation Between Hash Marks
1 DAY	1	4.1	A2	- 1 .	4/3	д.4	1	A5	1.		A6	6 hrs
2 DAY	B1	B2	B3	<u> </u>	B4	<u> </u>	E	95	<u> </u>		B6	12 hrs
0 DAY	01	1 02	1 0)	COA	04	- 1	CS .	- 1		CO:	12 hrs
4 DAY	D1	D2	D2A	7 D3	D	4 05	5 D6	;	D7		D8	12 hrs
5 DAY	t1	EIA	E2	ŧЗ	±4	E5	tb	1	t/	FR	1	12 hrs
6 DAY	F1		F2	F3	F4	F5		F6	F7		F8	12 hrs
7 DAY	G1	92	G3	G4	95	06	1 (97	96	1	G9	12 hrs
10 DAY	J1	J2	J3	J4	J5 J	6 J7	J8	I	J9		ı	12 hrs
14 DAY	N1	N2	N3	N4	NE N	6 147	NE	1	N9)	- 1	12 hrs
30 DAY	I	AK30	J	I								12 hrs

Advantages of Nanolanders include:

Smaller instrument size

Smaller air shipment (Fed Ex)

- 2. no HazMat so a shipment of lander components can fly from point-of-origin to point-of-operation, and be assembled pier-side
- 3. Scrap iron anchors available in port
- 4. Multiple ballast release methods
- 5. Interchangeable payloads can fit within a standard payload bay, composed of multiple sensors and samplers,
- 6. Lander can remain on the seafloor bottom providing long, undisturbed records;
- 7. Independent of surface waves, currents, and weather
- 8. Landers can operate at any depth
- 9. Several landers may be deployed to survey a large area
- 10. Instruments or samplers can be placed at specified horizontal spacing or heights off the bottom at any depth;

Advantages of Nanolanders include:

- 11. Operators can follow descent or ascent by sound-ranging;
- 12. With a short coupled anchor, the ballast is on the bottom and left behind, minimizing the danger of being stuck in the mud or rocky clefts, and unaffected by bottom slope
- 13. Landers are simple and robust enough to be used by any size project or institution
- 14. Student projects are readily adapted to Landers, providing new ideas to principal investigators, and training and inspiration to a new generation of scientists and engineers
- 15. Standardization encourages adaptation and experimentation.

Uses of Nanolanders include:

- 1. A primary data or sample collection device,
- 2. as a **test bed** to evaluate new components for other vehicles or future use.
- 3. It provides deck crew operational **training** on launch-and-recovery techniques for larger systems, and gives engineers and technicians field experience and the confidence that comes from a success deployment and recovery;
- 4. as a **baited lure**: The lander can be used to lure animals towards its position by the use of bait. Low-light cameras using red LEDs can image animal behavior without disturbance, or await the arrival of an ROV or manned submersible;
- 4. **Scout**: Landers can initially survey a specific area of interest

Nanolanders require minimal deck gear:

A lander can be configured to whatever **ship-of-opportunity** presents itself, small or large.

A larger pool of smaller ships is available, in smaller harbors closer to points of interest, during a more advantageous time, at a more modest cost;

no specialized deck gear required

cheaper

smaller seaports, perhaps better located

flexible schedule

Nanolander come in sizes:

Nanolanders are great for technology development, experimentation, or just following a hunch

Oceanography for Everyone - The OpenCTD

Share

Latest Updates

07/23/13: Check out some of the coverage the OpenCTD has received over the last month!

- Crowdfunding a tool to enable oceanography for the masses: OpenCTD
- Crowdsourcing may open up ocean science
- · Crowdsourcing project targets open-source tool for ocean research
- . OpenCTD project looks to bring oceanography instruments to the people

A nonprofit oceanographic research center

SCIENCE Y

TECHNOLOGY ~

PRODUCTS V

NEWS Y

AT SEA V

ABOUT ~

SeeStar Imaging System

The End