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Motivation – Why Chesapeake Bay? 

The Chesapeake Bay: 
 

•  Largest estuary in U.S. 
•  Benefits derived from Bay 

> $100 Billion annually 
•  Major anthropogenic 

impacts threatens 
Chesapeake’s 
economic/social services 

•  Additional impacts of 
climate change are not 
yet known 

•  One of longest & most 
comprehensive data sets 
(1985-present) 
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Motivation – Why focus on hypoxia?  

Hypoxic (low oxygen) 
waters: 
 
•  Impact ecological 

resources in Bay, 
particularly demersal fish 
(low catches where DO 
< 3 mg/L) 
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Chesapeake Hypoxia Testbed 

COMT Chespeake Hypoxia Objectives:  
 

•  Evaluate short-term forecast skill of hypoxia events 
•  Transition hypoxia forecasts to operations 
•  Work with stakeholders to better understand how 

they prefer to receive this forecast information 
•  Evaluate scenario-based forecasts  

•  How will decreased nutrient inputs impact hypoxia? 
•  How will climate change impact hypoxia?  
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Outline 

•  Short-term operational forecasts (M. Friedrichs/A. Bever) 
•  Review of Year 3 accomplishments 
•  Quasi-operational forecasts (VIMS website) 
•  Operational forecasts (dev) (CBOFS website) 
•  Additional skill assessment of forecasts 

 

•  Improvements to Hypoxia-SRM (M. Scully/C. Friedrichs) 
 

•  Seasonal patterns in P biomass & PP variability  
    (R. Hood/H. Wang) 
 

•  Scenario-based operational forecasts (I. Irby/M. 
Friedrichs) 

•  Evaluating uncertainty in forecasts of nutrient reduction impacts 
•  Assessing impacts of climate change on nutrient reduction impacts 

 

•  Year 5 plans (M. Friedrichs) 



Chesapeake Hypoxia – previous work 
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Previous COMT work identified 
and compared skill of multiple 

Chesapeake Bay oxygen models 
 

Models: 
 

•  Eight models were compared, 
including multiple physical and 
biogeochemical variants 

Available data: 
 

•  Models were assessed by 
monthly data (semi-monthly in 
summer) at multiple locations 
throughout Bay from 1985-
present 

 

•  Data includes S, T, DO and 
multiple other ecological 
parameters 
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Results: 
 

Year 2-3: Multiple model 
comparison (Irby et al. 2016): 
•  Simple models performed as well as 

more complex models  
•  Mean of multiple models performed 

best 
 

Year 3: Examined nowcast vs. 
hindcast skill of CBOFS bottom DO: 
•  Nowcast bottom DO skill > hindcast 

bottom DO skill! 
 

Year 3: Quasi-operational forecasts 
came online on VIMS website: 
•  Focus Groups & Stakeholder Workshops 

 

 

Chesapeake Hypoxia – previous work 



8 

Stakeholder Workshop summary: 

•  Strong enthusiasm for hypoxia forecasts as complementary tool 
with other information sources Capt. Richie Gaines  

Anglers are not born, they 
are made by 
circumstance, and 
sometimes it takes a long 
time to get the right 
circumstances 
together….. 
                       John W. Randolph 

Chesapeake Hypoxia – Stakeholders 

•  Several captains already use real-
time observations for planning (e.g., 
water clarity, temperature, wave 
heights) and/or short-term model 
forecasts (e.g., currents from CBOFS) 

•  Little interest in hypoxia forecasts 
beyond 2-3 days because of limited 
trust in detailed weather/wind 
forecasts beyond 2-3 days 

•  Provided specific feedback on 
website presentation 
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Year 4 Forecast improvements: 
 

•  Forecast now uses CBOFS operational forcing 
 

•  Forecast now shows mean of two models  
•  SRM = Simple Respiration Model 
•  ECB = Estuarine Carbon Biogeochemistry model 

 

•  SRM has been improved with seasonally variable 
respiration rate 

 

•  New (more detailed) color scale 
 

•  Improved appearance on mobile devices 

Chesapeake Hypoxia Forecast: www.vims.edu/hypoxia 



Chesapeake Hypoxia Forecast: www.vims.edu/hypoxia 
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Blues à High bottom oxygen 
 = Good bottom water 
 = Bottom fish and crabs 

 
yellow/green à Moderate to low oxygen 

 = Poor bottom water 
 = Fewer bottom fish and crabs 

 
red/orange à Very low bottom oxygen 

 = Bad bottom water 
 = No bottom fish or crabs 

iPhone Screenshot 
from Friday 
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Friday’s Nowcast Friday’s Forecast 

Chesapeake Hypoxia Forecast: www.vims.edu/hypoxia 
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Blue à Increasing oxygen 
          (Improving bottom water 

     in western Bay) 
  

Red à Decreasing oxygen 
        (Degrading bottom water 

     in eastern Bay) 

Due to forecast of strong NNW 
winds over the weekend 

Chesapeake Hypoxia Forecast: www.vims.edu/hypoxia 
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Chesapeake Hypoxia Forecast: www.vims.edu/hypoxia 

From July 2017 
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“Quasi-operational” forecasts 
on VIMS website: 

http://www.vims.edu/hypoxia 

“Truly operational” forecasts 
on NOAA CBOFS (dev) site: 

https://tidesandcurrents.noaa.gov/ofs/dev/cbofs/cbofs.html 
 

Transition 
(Hypoxia_SRM now in ROMS trunk!!!) 

Chesapeake Hypoxia Forecast Transition 
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Surface 
Temperature 

Surface 
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Bottom 
Oxygen 
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Operational Forecast Site Developmental Site 

Chesapeake Hypoxia Forecast Transition 



Outline 

•  Short-term operational forecasts (M. Friedrichs/A. Bever) 
•  Review of Year 3 accomplishments 
•  Quasi-operational forecasts (VIMS website) 
•  Operational forecasts (dev) (CBOFS website) 
•  Additional skill assessment of forecasts (A. Bever) 

 

•  Improvements to Hypoxia-SRM (M. Scully/C. Friedrichs) 
 

•  Seasonal patterns in P biomass & PP variability  
    (R. Hood/H. Wang) 
 

•  Scenario-based operational forecasts (I. Irby/M. 
Friedrichs) 

•  Evaluating uncertainty in forecasts of nutrient reduction impacts 
•  Assessing impacts of climate change on nutrient reduction impacts 

 

•  Year 5 plans (M. Friedrichs) 
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Additional Year 4 objectives: 
•  How does the nowcast skill of SRM vs. ECB compare? 
•  How does the forecast skill of both models degrade over 6 - 

48 hours?  
 

Methods: 
•  Improve SRM by imposing seasonally varying respiration rate 
•  Use 2.75 years of CBOFS operational forcing:  

 Jan. 2014 – Sept. 2016 
•  Apply identical forcing to both models 
•  Run 2.25 day simulation every six hours for the full 2.75 years, 

generating continually overlapping nowcasts and forecasts 
(6h, 12h, 18h, 24h, 30h, 36h, 42h, 48h) 

Chesapeake Hypoxia Forecast - Testing 
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ECB vs. SRM 

data SRM ECB 

data SRM ECB 

2014               2015               2016 

Bo
tto

m
 D

O
 [m

g
/L

] 
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à ChesROMS-ECB and ChesROMS-SRM produce nowcasts 
with similar skill (and that are equally skillful as hindcasts) 
 
 

WHAT ABOUT FORECAST SKILL? 
 

•  Do forecasts predict same timing of DO events as 
nowcasts?  

•  Are forecasts skillful enough at predicting relatively 
large changes in DO, such that stakeholders can 
use the forecasts to plan their daily activities?  

 

Chesapeake Hypoxia Forecast - Testing 
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Methods:  
•  Significant “events” were defined as daily averaged 

bottom DO changing by ≥ 2mg/L over ≤ 2 days 
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Chesapeake Hypoxia Forecast - Testing 
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Methods:  
•  Significant “events” were defined as daily averaged 

bottom DO changing by ≥ 2mg/L over ≤ 2 days 
 

•  Error (lag/lead time) of forecast is determined by time-
shifting the forecast output and determining the time shift 
with the highest r2 value between the nowcasted and 
forecasted DO 

 

•  Examined results at 11 stations for both models 

 

 

Chesapeake Hypoxia Forecast - Testing 
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Forecast leads nowcast by 4.3h, for SRM at CB4.1C 
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Chesapeake Hypoxia Forecast - Testing 
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Chesapeake Hypoxia Forecast - Testing 
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Next year’s work (Year 5):  
•  Complete transition of hypoxia forecasts to operational 

CBOFS site (AJ Zhang) 
•  Provide forecast information for posting on MARACOOS 

Ocean Obs site (K. Knee) 
•  Examine feasibility of improving hypoxia forecasts by 

incorporating bottom oxygen data (A. Bever) 
•  Examine feasibility of including habitat suitability 

information for HABs & pathogens (R. Hood) 
•  Improve presentation of information provided on VIMS 

site through outreach with end-users (S. Musick) 
•  Add salinity, temperature (HABs, vibrio?) 
•  Add time series 
•  Add climatological information 

Chesapeake Hypoxia Forecast – Year 5 plans 



Outline 

•  Short-term operational forecasts (M. Friedrichs/A. Bever) 
•  Review of Year 3 accomplishments 
•  Quasi-operational forecasts (VIMS website) 
•  Operational forecasts (dev) (CBOFS website) 
•  Skill assessment of forecasts 

 

•  Improvements to Hypoxia-SRM (M. Scully/C. Friedrichs) 
 

•  Seasonal patterns in P biomass & PP variability  
    (R. Hood/H. Wang) 
 

•  Scenario-based operational forecasts (I. Irby/M. 
Friedrichs) 

•  Evaluating uncertainty in forecasts of nutrient reduction impacts 
•  Assessing impacts of climate change on nutrient reduction impacts 

 

•  Year 5 plans (M. Friedrichs) 



Simple Approaches to Modeling Dissolved Oxygen 
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Goals and Motivation:  

•  Develop a method for estimating Primary Production (PP) from time-series 
measurements of dissolved oxygen (O2) that can provide estimates of 
fundamental rates to rigorously test biogeochemical models. 

•  Incorporate a light-dependent formulation for PP into a simple model for 
O2 that is suitable for operational forecast modeling. 

Outline:  

•  Method for estimating PP and fundamental rates from observed O2. 
•  Validation of the method with output from biogeochemical model (ECB). 
•  Modeling results from simple 1-term model with improved representation 

of biological processes (oxygen production). 

  

By Malcolm Scully    (presented by Carl Friedrichs) 



Method for Estimating PP from O2 Time-Series 
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Data Needs:   

•  Continuous (hourly) measurements of near surface O2 (CBIBS buoys) 
•  Continuous estimates of incoming solar radiation (NARR model) 

Procedure:  

•  Calculate time-rate of change of oxygen (dO2/dt) from buoy data. 
•  Estimate coefficient (C) by taking the average value of dO2/dt at night 

(this represents both biological drawdown and physical processes). 

•  Perform least-squares fit to  Pm tanh(αI/Pm)  to obtain estimates of Pm 
(maximum phytoplankton growth rate) and α (initial slope of P-I curve) 
over a 20-day moving window. 

  

dO2

dt
= Pm tanh

αI
Pm
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Primary Production (PP) 
 changes hourly with light 
 

Constant 

α = init. slope of P-I curve  
Pm = Max. growth rate 
I = Irradiance (Light) 

Hourly change in O2  

(Jassby & Platt 1976) 



Method for Estimating PP from O2 Time-Series 
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Example from CBIBS Goose’s Reef Buoy for July-August 2013 
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Application of Method to ECB Output 
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Estimates of Primary Production from CBIBS Buoys 
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Evidence for Light Limitation at Susquehanna Buoy 
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Simple O2 Model including Primary Production 
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Model Comparison of Surface O2 at Goose’s Reef 

•  Previously, the Simple Respiration Model assumed that surface oxygen 
concentration was maintained at saturation value. 

•  New formulation captures time variations (including super-saturation) in a 
much more realistic way. 



Model Comparison of Bottom O2 (Scully 2013 data) 



Outline 

•  Short-term operational forecasts (M. Friedrichs/A. Bever) 
•  Review of Year 3 accomplishments 
•  Quasi-operational forecasts (VIMS website) 
•  Operational forecasts (dev) (CBOFS website) 
•  Skill assessment of forecasts 

 

•  Improvements to Hypoxia-SRM (M. Scully/C. Friedrichs) 
 

•  Seasonal patterns in P biomass & PP variability  
    (R. Hood/H. Wang) 
 

•  Scenario-based operational forecasts (I. Irby/M. 
Friedrichs) 

•  Evaluating uncertainty in forecasts of nutrient reduction impacts 
•  Assessing impacts of climate change on nutrient reduction impacts 

 

•  Year 5 plans (M. Friedrichs) 



UMCES: Raleigh Hood and Hao Wang 

37 

Overarching Questions: 
 
•  Do current generation biogeochemical models capture 

observed seasonal patterns in phytoplankton biomass and 
primary production variability in Chesapeake Bay?  

•  What is the role of lateral transport in supplying organic matter 
to the deep channel of the mainstem Chesapeake Bay? 

•  Can we use our BGC model as a dynamic interpolator to 
provide insight into the temporal and spatial variability in 
denitrification in Chesapeake Bay? 



UMCES: Raleigh Hood and Hao Wang 
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Overarching Questions: 
 
•  Do current generation biogeochemical models capture 

observed seasonal patterns in phytoplankton biomass and 
primary production variability in Chesapeake Bay?  

•  What is the role of lateral transport in supplying organic matter 
to the deep channel of the mainstem Chesapeake Bay? 

•  Can we use our BGC model as a dynamic interpolator to 
provide insight into the temporal and spatial variability in 
denitrification in Chesapeake Bay? 



AND TIME 

Variability of biomass and productivity 
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Classic Conceptual Model of Biomass and Production 
Variability: 

Figure courtesy  
of M. Kemp 

 

• Freshet drives the spring diatom bloom and leads to export to the bottom. 
• Increasing summer temperatures lead to remineralization of organic 
matter on the bottom. 
• Upward diffusive mixing and transport of nutrients to the surface during 
summer leads to high summer production. 
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Classic Conceptual Model of Biomass and Production 
Variability: 

From Malone, 1991 
See also Adolf et al. 2006 
 
• The spring diatom bloom is associated with freshet, but its not a productivity maximum. 
• During summer have maximum productivity.  This summer production is fueled largely 
by recycling of organic matter from the bottom that was put there during spring. 
• Also see a shift in size: large diatoms in spring - > smaller flagellates and dinoflagellates 
in summer. 

Variability of biomass and productivity 
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Model Configuration (ChesROMS BGC): 

•  Xu et al. (2012) 
•  Grid: 100x150x20 

•  Brown et al. (2013), Wiggert et al. (2017) 
•  Fennel et al. (2006) with water column and 

benthic denitrification. 
 

Variability of biomass and productivity 
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Modeled Phytoplankton Biomass: 

Models Capture: 
 
•  Spring bloom 
•  Deep chlorophyll 

accumulation  in Spring 
•  Low biomass during 

summer 

Variability of biomass and productivity 
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Modeling Primary Production Rate:  

 
•  Model captures the seasonal variability of the primary 

production in some years: e.g., 1994 highest production during 
summer as observed.  

Variability of biomass and productivity 
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Modeling Primary Production Rate:  

 
•  But not in others: e.g., in 1991 see a dramatic drop in the summer 

which is not consistent with observations.  

Variability of biomass and productivity 
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Role of River Forcing:  

•  Years with low nutrient loading during summer tend to have 
primary production rates that are too low during summer (e.g., 
1991). 

•  River discharge 
plays a role in this 
interannual 
variability. 

 
•  Years with high river 

nutrient loading 
during summer tend 
to capture 
observed high 
summertime primary 
production (e.g., 
1994). 

 

Variability of biomass and productivity 



46 

AND TIME 

Classic Conceptual Model of Biomass and Production 
Variability: 

Figure courtesy  
of M. Kemp 

•  We hypothesize that there is insufficient upward diffusion and mixing of 
nutrients to support high summertime production in our models when 
river nutrient inputs during summer are low.   

Variability of biomass and productivity 
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Conclusions: 

•  Models can capture observed seasonal and vertical 
variability in phytoplankton biomass but they do not 
consistently capture seasonal primary production variability. 

•  Models require lateral nutrient inputs from rivers to maintain 
high production during summer.  

•  Low lateral supply during summer results in nutrient limitation 
and unrealistically low summertime production. 

•  We hypothesize that there is insufficient upward diffusion 
and mixing of nutrients to support high summertime 
production in these models when summertime river nutrient 
inputs are low.   

Variability of biomass and productivity 



Outline 

•  Short-term operational forecasts (M. Friedrichs/A. Bever) 
•  Review of Year 3 accomplishments 
•  Quasi-operational forecasts (VIMS website) 
•  Operational forecasts (dev) (CBOFS website) 
•  Skill assessment of forecasts 

 

•  Improvements to Hypoxia-SRM (M. Scully/C. Friedrichs) 
 

•  Seasonal patterns in P biomass & PP variability  
    (R. Hood/H. Wang) 
 

•  Scenario-based operational forecasts (I. Irby/M. 
Friedrichs) 

•  Evaluating uncertainty in forecasts of nutrient reduction impacts 
•  Assessing impacts of climate change on nutrient reduction impacts 

 

•  Year 5 plans (M. Friedrichs) 



Impact of Nutrient Reduction 
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Evaluating confidence in the  

impact of regulatory (TMDL) nutrient reduction  

on Chesapeake Bay water quality 



Impact of Nutrient Reduction 
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TMDL Nutrient 
Reduction from 

Watershed Model 

Regulatory  
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CH3D-ICM 

Academic 
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ROMS-ECB 

1993 – 1995 
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Watershed Model 
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CH3D-ICM 

Regulatory  
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CH3D-ICM 

Academic 
Model 

ROMS-ECB 

Academic 
Model 

ROMS-ECB 

Prediction of  
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Prediction of  
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Confidence 





Impact of Nutrient Reduction 
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Confidence Index 
• Across habitats 

• Across years 

• Across methodology 

 

 

 

 

 
Highest  

Confidence 
 

Lowest  
Confidence 

.85 – 1.0 

.75 - .84 

.50 - .74 

.00 - .49 

Confidence Index 

 
Issues Identified 

 
•  Chester River:  

Regulatory (EPA) Model 

•  Eastern River:   
Academic Model 

•  TMDL regression 
methodology 

 
 
 
 
 

 



Impact of Nutrient Reduction 
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Results:  
 

•  High similarity/confidence in terms of prediction of attainment 
of water quality standards resulting from planned nutrient 
reductions 

 
•  Large difference in the intermediate steps to get to water 

quality standard attainment 
 
•  Comparing models can elucidate issues in models and 

methodology  



Climate Change & Nutrient Reduction 
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The competing impacts of  

climate change and nutrient reduction  

on dissolved oxygen  
 



Climate Change & Nutrient Reduction 
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Temperature Sea Level Rise River Flow 

2050 Relative to 1993-1995 

1.75°C 0.5m ~15% winter 

Oxygen Solubility 

Biologic Rates 

Seawater intrusion 

Bay volume 

Fresh water 

Nutrient load 



Climate Change & Nutrient Reduction 
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TMDL + Temperature 
 
 

TMDL + River Flow 
 
 

TMDL + Sea Level Rise 

Climate Change Scenarios 

Current 
 
 

TMDL 
 
 

TMDL + Climate Change 



Climate Change & Nutrient Reduction 
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Impact of TMDL is 
greater than 

impact of climate 
change 

 
A TMDL wet year 

looks like a 
current dry year 
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Climate Change & Nutrient Reduction 
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Impact of TMDL is 
greater than 

impact of climate 
change 

 
A TMDL wet year 

looks like a 
current dry year 

 
Temperature is the 
biggest driver of 
climate change 

impact 
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Climate Change & Nutrient Reduction 
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Results:  
 

•  TMDL > Climate Change 
 
•  Higher Temperature > Sea Level Rise & Increased River Flow 
 
•  Hypoxia starts ~7 days earlier with climate change 



Climate Change & Nutrient Reduction 
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FUTURE RESEARCH DIRECTIONS 

CHAMP: Chesapeake Hypoxia Analysis and Modeling Program 

•  Predict the impacts of 
future climate 
change and pollution 
on hypoxia 

•  Predict the future 
effectiveness of 
various pollution 
reduction scenarios 
on reducing hypoxia 

Improved Management Decisions 

Funded by NOAA CSCOR – Coastal Ocean Program, 2016-2021 



Outline 

•  Short-term operational forecasts (M. Friedrichs/A. Bever) 
•  Review of Year 3 accomplishments 
•  Quasi-operational forecasts (VIMS website) 
•  Operational forecasts (dev) (CBOFS website) 
•  Skill assessment of forecasts 

 

•  Improvements to Hypoxia-SRM (M. Scully/C. Friedrichs) 
 

•  Seasonal patterns in P biomass & PP variability  
    (R. Hood/H. Wang) 
 

•  Scenario-based operational forecasts (I. Irby/M. 
Friedrichs) 

•  Evaluating uncertainty in forecasts of nutrient reduction impacts 
•  Assessing impacts of climate change on nutrient reduction impacts 

 

•  Year 5 plans (M. Friedrichs) 



Year 5 plans 
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•  Scenario-based operational forecasts: CHAMP (NOAA-CSCOR) 
 

•  Improvement of Hypoxia-SRM (inclusion of simple PP model)  
 

•  Evaluating skill of habitat suitability models for nowcasting/
forecasting HAB species and bacterial pathogens 

 

•  Expanding hypoxia forecasts 
•  Available on MARACOOS site 
•  Available on CBOFS site 
•  Improved forecasts using available data (CBIBS) 
•  Continued work with stakeholder focus groups 




