

NOAA's Coastal Ocean Reanalysis (CORA)

Using the IOOS Cloud Sandbox to Support Community Based Modeling

> Analise Keeney (NOAA) John Ratcliff (NOAA) Patrick Tripp (TetraTech)

* 🔍 🔍 🍈

CO-OPS Impact

Grow the Blue Economy

- Each year, commercial mariners move 2.3 billion short tons of goods through U.S. waterways contributing **\$397 Billion** to the U.S. GDP
- These mariners rely daily on NOAA's network of real-time sensors to provide accurate navigation data and help ensure successful deliveries

Ensure Safe Navigation

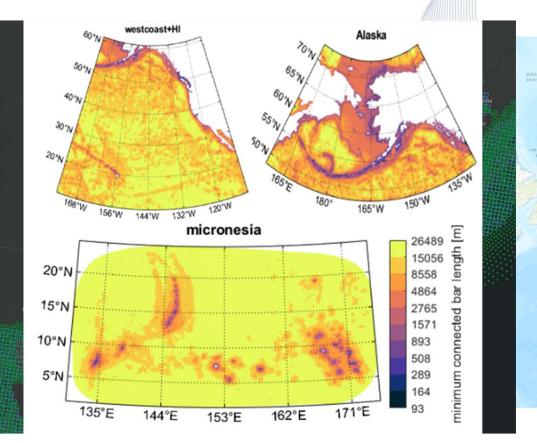
Since its inception in 1991, NOAA's PORTS® Program has contributed to a 33% reduction in maritime accidents and 59% reduction in groundings

Protect Coastal Communities

- 40% of the Nation's population lives within 100 miles of the coast.
- **CO-OPS** delivers **10+ products** designed to help these regions face their unique threats, from hurricanes and tsunamis to high tide flooding

Invest In Innovation

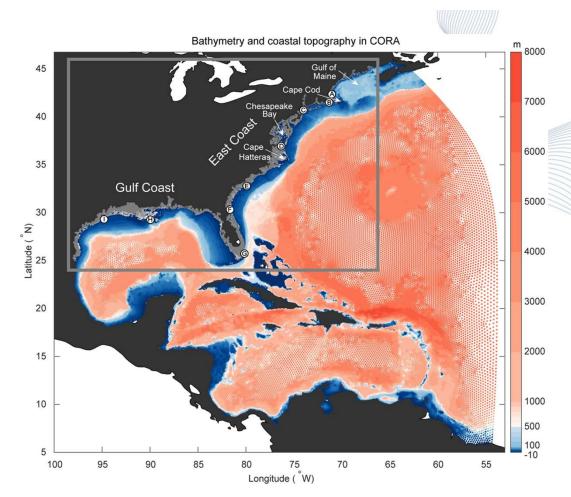
• CO-OPS is **consistently innovating** – we regularly test/install cutting-edge equipment/infrastructure and research/develop new products and models to **ensure our systems stay resilient, robust, and cost-effective**



Background

What is CORA?

NOAA's **C**oastal **O**cean **R**e**A**nalysis (CORA) is a collaborative, community-based model effort designe to:


- Leverages NWLON observations and modern hydrodynamic models to bridge gaps in coastal long term water level observations.
- Supports improvements in prototyping projections and performance of ensemble coastal water prediction systems.
 - Develops a **nation-wide dataset** that **better serves** coastal communities.

Purpose

Why invest in CORA?

- Serves to advance and uphold many of NOS <u>Strategic Priorities</u> associated with Coastal Resilience and Comprehensive Services.
- Supports goals outlined in the Coastal Inundation at Climate Timescales (CICT) White Paper, providing vital information for flood risk assessment and planning.
- Simulate long-term water level information critical for building baseline climatologies, trends and monitoring long-term sea level change, and subseasonal to annual flood projections.

Spatial domain and relative coverage of the ADCIRC model used for the Gulf, East Coast, and Caribbean reanalysis, CORA-GEC. Coastlines and continental shelves are noted in white to blue, and model domain is noted in red.

High Performance Computing Resources

Community Modeling for Operational Use

Hatteras at UNC's Renaissance Computing Institute (RENCI)

- Foundational methods
- Ongoing research

IOOS Cloud Sandbox

- Analysis
- Validation
- Prototyping

R&D HPC Allocation to Gaea C6

- Operational runs
- Derived product development

IOOS Sandbox Infrastructure and Workflow

Patrick Tripp, Tetra Tech - Updates since last DMAC, April 2024

- NOS Sandbox deployed end of 2023
 - Deployed behind FISMA boundary, access provided through a bastion server
 - Requires CAC to access
 - Working on Okta authentication for qualified non-CAC users
- IOOS/RPS (Tetra Tech) Sandbox deployment
 - Limited external user access for COMT model development and other funded projects
 - Setup and test models in the workflow on IOOS Sandbox, then transition to NOS Sandbox for R2O and longer analysis runs.
- ADCIRC CORA in co-operation with RENCI
- LiveOcean Hindcasts completed on NOS Sandbox
- From the Office of Water Prediction (**OWP**)
 - WRF-Hydro component of the National Water Model
 - SCHISM coastal model component of the National Water Model
 - **D-Flow FM** coastal model
 - Added templates for future model integrations

IOOS Sandbox Infrastructure and Workflow

- Additional AWS virtual machine instance types supported and tested
 - AMD hpc7a, Intel large memory instances, no ARM or GPU
 - Supported instance options are self-discoverable now, e.g. number of CPUs, network interfaces, etc.
 - New instance types should be **immediately usable** when released by Amazon
- Upgraded Intel MPI, SPACK, and other related libraries
- Decided to **not use SLURM**. Existing cloudflow workflow will continue on-demand cluster creation; lightweight, more flexible

Governance

- Limited permission policy to enforce least-privilege security, isolated from other AWS resources
- User management, easily add multiple users, easily redeploy, using CSV file currently
- Stability and exception handling
 - Improved **"Zombie node" prevention** and management, enforce and check **exit/return values**, signal trapping
 - Automatic unique and **memorable name tags** on resources
- Improved and additional documentation

IOOS Sandbox Infrastructure and Workflow

Current priorities

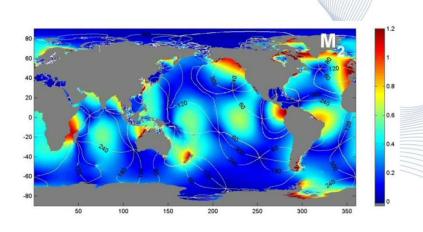
- Model integrations in-progress:
 - SECOFS South Eastern Coastal Ocean Forecast SCHISM
 - ECCOFS Eastern Coastal Community Ocean Forecast ROMS
 - NECOFS North Eastern Coastal Ocean Forecast FVCOM
- **Training** materials and workshop
- Contributor guides/instructions
- More Governance
 - Additional guardrails, cost monitoring and cost-overrun prevention
- Re-integrate Lustre FSx filesystem into workflows (high-speed, low-latency, filesystem)
 - Workflow tasks will need to copy/move input and output files to/from temporary high-speed scratch disk
- **NOSOFS** Upgrade and prep for R&D
- **NOSOFS** Skill Assessment System Sandbox integration (**CO-OPS, OCS**)

John Ratcliff, NOAA CO-OPS

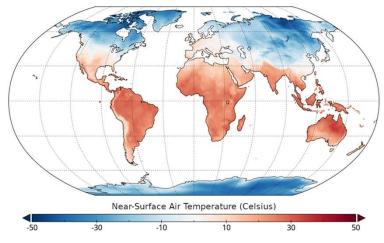
Tides, Meteorology, Waves

• ADCIRC Input Files

 Fort.{13,14,15, 22, 26, 221.nc, 222.nc}, swaninit


CORA Workflow

- Define compute resources
- Define job parameters
- Starting the simulation
- run_storms.sh ADCIRC management script
- File management



Running CORA in the Sandbox Model Forcing

- Tides
 - **TPXO Global Tidal Model** for amplitude and phase at boundary nodes
 - **tide_fac.f** for nodal factors and equilibrium arguments
- Meteorology
 - ERA5 Wind Velocity and Pressure Data
- Waves
 - **SWAN** model coupled with ADCIRC

WFDE5 Monthly Mean Near-Surface Air Temperature - Jan 2018

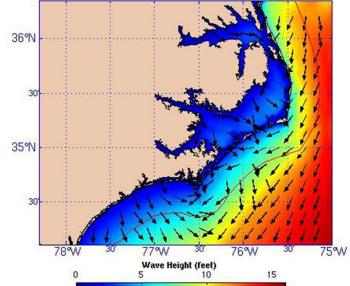
Running CORA in the Sandbox ADCIRC Input Files

Required:

- Fort.14
 - Grid and Boundary Information File
 - Gulf and East Coast used widely-tested HSOFS mesh
 - Pacific is using new mesh cut from STOFS Global mesh

• Fort.15

• Model Parameter and Periodic Boundary Condition File



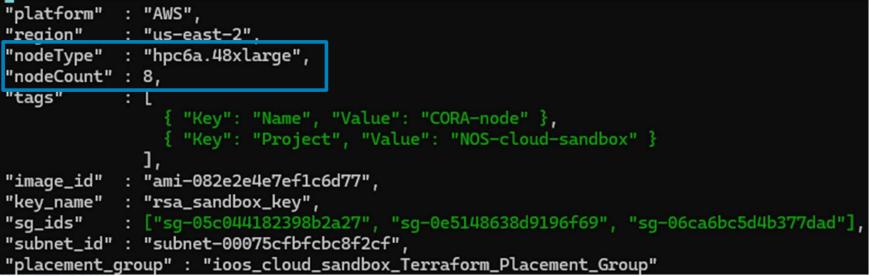
Running CORA in the Sandbox ADCIRC Input Files

Optional/Forcing:

- Fort.13
 Nodal Attributes File
 - Manning's n, surface roughness, etc.
- Fort.26
 - SWAN parameter file
- swaninit
 - SWAN init file
- Fort.22
 - $\circ \quad \text{Wind forcing file} \\$
 - Fort.221.nc and Fort.222.nc
 - ERA5 NetCDF Pressure and Wind

SWAN Total Significant Wave Height and Direction : Run Time: 19-Nov-2008 01:00:00 (EST) Valid Time: 19-Nov-2008 01:00:00 (EST)

Running CORA in the Sandbox CORA Workflow


The **Sandbox** uses **Prefect** to manage workflows and tasks (**cloudflow**) in combination with the ADCIRC **run_storms.sh** script to submit and run **ADCIRC + SWAN**

CORA Workflow: Define the Compute Resources

Cluster Config File: ec2-user/hsofs.Cloud-Sandbox/cloudflow/cluster/configs/NOS/cora.hsofs.cfg

Choose 'nodeType' and 'nodeCount'

'hpc6a.48xlarge' instance has 96 cores and 384 GiB of memory

CORA Workflow: Define the Job Parameters

Job File:

ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/jobs/ec2-user.test.hsofs (GEC) ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/jobs/test.pac-cora.reanalysis (Pacific)

"JOBTYPE" : "adcircreanalysis",
"OFS" : "adcirc-cora",
"YYYY" : "2006",
"BUCKET" : "",
"BCKTFLDR" : "",
"OUTDIR" : "",
"ProjectName" : "Reanalysis-test",
"ProjectHome" : "/save/ec2-user/cora-runs/PAC-ADCIRC",
"ADCIRCHome" : "/save/ec2-user/adcirc/build",
"GRID" : "pac-cora",
"CONFIG" : "/save/ec2-user/cora-runs/PAC-ADCIRC/configs/pac-cora_prior_config.yml",
"CONFIGTMPL" : "/save/ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/templates/pac-cora_prior_config.yml.in",
"contact" : "john.ratcliff@noaa.gov",
"WRITERCORES" : "2"

CORA Workflow: Define the Job Parameters

Job File: ec2-user.test.hsofs (Gulf/East Coast), test.pac-cora.reanalysis (Pacific)

Choose rear to Run	
"JOBTYPE" : "adcircreanalysis",	
"OFS" : "adcirc-cora",	
"YYYY" : "2006",	
"BUCKET" : "",	
"BCKTFLDR" : "",	
"OUTDIR" : "",	
"ProjectName" : "Reanalysis-test",	
"ProjectHome" : "/save/ec2-user/cora-runs/PAC-ADCIRC",	
"ADCIRCHome" : "/save/ec2-user/adcirc/build",	
"GRID" : "pac-cora",	
"CONFIG" : "/save/ec2-user/cora-runs/PAC-ADCIRC/configs/pac-cora_prior_config.yml",	
"CONFIGTMPL" : "/save/ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/templates/pac-cora_prior_config.yml.in"	,
"contact" : "john.ratcliff@noaa.gov",	
"WRITERCORES" : "2"	

Choose Year to Run

Running CORA in the Sandbox CORA Workflow: Define the Job Parameters

Job File: ec2-user.test.hsofs (Gulf/East Coast), test.pac-cora.reanalysis (Pacific) Choose Config Files to Use, make changes in the 'CONFIGTMPL'

"JOBTYPE" :	"adcircreanalysis",
"OFS" :	"adcirc-cora",
"YYYY" :	"2006",
"BUCKET" :	
"BCKTFLDR" :	
"OUTDIR" :	11 H J
"ProjectName"	': "Reanalysis-test",
"ProjectHome"	: "/save/ec2-user/cora-runs/PAC-ADCIRC",
"ADCIRCHome"	: "/save/ec2-user/adcirc/build",
"GRID"	: "pac-cora",
"CONFIG"	: "/save/ec2-user/cora-runs/PAC-ADCIRC/configs/pac-cora_prior_config.yml",
"CONFIGTMPL"	: "/save/ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/templates/pac-cora_prior_config.yml.in",
"contact"	: "john.ratcliff@noaa.gov",
"WRITERCORES"	': "2"
2	

'CONFIGTMPL'

NTIP: true NBFR: true NWS: "14" WinPreSrc: "netcdf" WithBasin: 1 WithRegion: 0 BasinPreFile: "fort **BasinWinFile**: RegionPreFile: RegionWinFile: IncludeRivers: 1 # forcing rampup length, days DRAMP: 10.0 -# model time step, secs DT: 6.0 # use padcswan (1), or not (0) Coupled: 1 StationFile: pac-cora.stationfile.dat GlobalOutputInterval: 3600.0 LocalOutputInterval: 3600 RNDAY: 400.0 / TOUTSE: 30 DynWatLevCor: None

Fort.15 Filled based on 'CONFIGTMPL'

	! DT - TIME STEP (IN SECONDS)
!	STATIM - STARTING TIME (IN DAYS)
1	REFTIM - REFERENCE TIME (IN DAYS)
1	WTIMINC
	! RNDAY - TOTAL LENGTH OF SIMULAT
	! DRAMP - DURATION OF RAMP FUNCTION
1	TIME WEIGHTING FACTORS FOR THE GWG
!	H0, NODEDRYMIN, NODEWETMIN, VELMIN
	SLAMO, SFEAO - CENTER OF CPP PROJEC
	FFACTOR
	ESL - LATERAL EDDY VISCOSITY COEFF
	CORI - CORIOLIS PARAMETER - IGNORE
	CONT CONTOETS I MIGHTEREN TONONE

National Oceanic and Atmospheric Administration | National Ocean Service | Center for Operational Oceanographic Products and Services | www.tidesandcurrents.noaa.gov

<DT>

0.00

0.00

<RNDAY>

<DRAMP>

0.00050

-0.2

0.0

0.8 0.2 0.0

0.10 0 0 0.01

222.286582 46.136879

<TidalPotentialBlock>

<TidalElevationBlock>

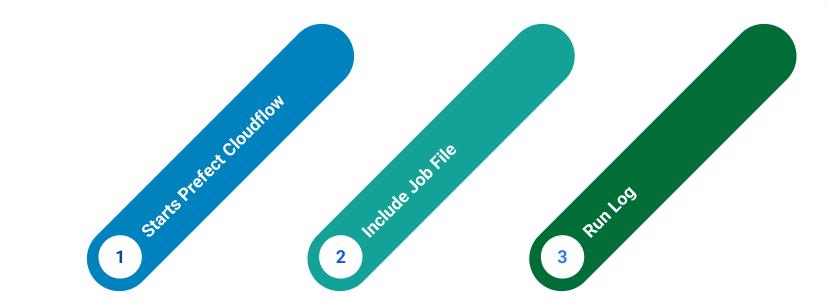
3600.00 3600.00

CORA Workflow: Define the Job Parameters

Job File: ec2-user.test.hsofs (Gulf/East Coast), test.pac-cora.reanalysis (Pacific)

'ProjectName', 'ProjectHome', 'ADCIRCHome', 'Grid', 'WRITERCORES' and 'contact' are pulled into the 'CONFIGTMPL'

"JOBTYPE" : "adcircreanalysis",
"OFS" : "adcirc-cora",
"YYYY" : "2006",
"BUCKET" : "",
"BCKTFLDR" : "",
"OUTDIR" : "",
"ProjectName" : "Reanalysis-test",
"ProjectHome" : "/save/ec2-user/cora-runs/PAC-ADCIRC",
"ADCIRCHome" : "/save/ec2-user/adcirc/build",
"GRID" : "pac-cora",
"CONFIG" : "/save/ec2-user/cora-runs/PAC-ADCIRC/configs/pac-cora_prior_config.yml",
"CONFIGTMPL" : "/save/ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/templates/pac-cora_prior_config.yml.in",
"contact" : "john.ratcliff@noaa.gov",
"WRITERCORES" : "2"


CORA Workflow: Define the Job Parameters

Job File: ec2-user.test.hsofs (Gulf/East Coast), test.pac-cora.reanalysis (Pacific)

'JOBTYPE' and 'OFS' are used with prefect cloudflow management to start the correct flow

"JOBTYPE" : "adcircreanalysis",
"OFS" : "adcirc-cora",
"YYYY" : "2006",
"BUCKET" : "",
"BCKTFLDR" : "",
"OUTDIR" : "",
"ProjectName" : "Reanalysis-test",
"ProjectHome" : "/save/ec2-user/cora-runs/PAC-ADCIRC",
"ADCIRCHome" : "/save/ec2-user/adcirc/build",
"GRID" : "pac-cora",
"CONFIG" : "/save/ec2-user/cora-runs/PAC-ADCIRC/configs/pac-cora_prior_config.yml",
"CONFIGTMPL" : "/save/ec2-user/hsofs.Cloud-Sandbox/cloudflow/job/templates/pac-cora_prior_config.yml.in",
"contact" : "john.ratcliff@noaa.gov",
"WRITERCORES" : "2"

CORA Workflow: Starting the Simulation

Run command: nohup ./workflows/workflow_main.py job/jobs/test.pac-cora.reanalysis >& pacshort.out &

National Oceanic and Atmospheric Administration | National Ocean Service | Center for Operational Oceanographic Products and Services | www.tidesandcurrents.noaa.gov

CORA Workflow: run_storms.sh

cloudflow brings in run_storms.sh

- Script system created by Brian Blanton at UNC RENCI to manage a large number of ADCIRC runs
- Uses the 'CONFIG'/'CONFIGTMPL' to set up ADCIRC input files and start the simulation
- Run files are written to a new directory named based on the year of the simulation

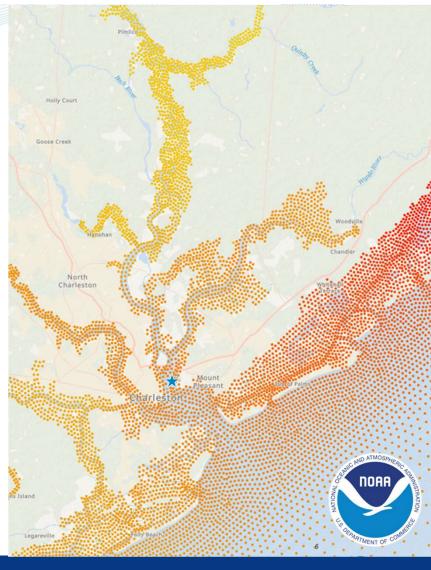
CORA Workflow: File management

 Fort.15, Fort.22, Fort.26, and swaninit files are filled as run_storms.sh runs and output to the new run file directory

'ec2-user/cora-runs/PAC-ADCIRC/ERA5/pac-cora/YYYY/fort.{15,22,26}'

• Fort.13 and Fort.14 are provided by user and placed in a 'Grids' directory and named based on 'GRID' in job file:

'ec2-user/cora-runs/PAC-ADCIRC/Grids/pac-cora.13'


'ec2-user/cora-runs/PAC-ADCIRC/Grids/pac-cora.14'

• Meteorological forcing files are provided by user placed in a 'Forcing' directory in a subdirectory named based on 'GRID' in job file: 'ec2-user/cora-runs/PAC-ADCIRC/Forcing/Winds/ERA5/pac-cora/fort.221.nc'

'ec2-user/cora-runs/PAC-ADCIRC/Forcing/Winds/ERA5/pac-cora/fort.222.nc'

Summary:

- The underlying hydrodynamic model for CORA is ADCIRC, which is forced by tides, meteorology, and waves (SWAN)
- Two files are required to run ADCIRC (fort.14 and fort.15) and several others are used with CORA
- CORA is run using the Cloud-Sandbox cloudflow scripts
- Primary files to set are the cluster config file, job file, and job config template file
- run_storms.sh pulls together the ADCIRC inputs and writes outputs to newly created directory for each year that is run
- Fort.{15,22,26} and swaninit files are created by run_storms, while grid and forcing files are provided by user and placed manually in appropriate directories

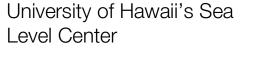
Community-Based Model Development

Leveraging Partnerships to Build Products

•

lacksquare

NOAA Partners:


Academic Partners:

Institute

- CO-OPS
- OCM
- IOOS
- NODD
- OAR/PSL

Contract Partners:

Tetra Tech's RPS Group

University of North Carolina

Renaissance Computing

