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Background

Sand Island, Midway Islands

300+ Active NOAA NOS Water Level Stations
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Common Data Quality Issues

Flat-line Rare events (good data)

Spikes Data Shift
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Manual processing and verification each month

At least 2.1 million data points per 
month!
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Goal: Develop and demonstrate an optimal AI approach 
to QC water level observations that:

1. Classifies 6-minute water level data from the primary sensor as good or 
bad

2. Replaces bad data points and fills gaps with backup sensor data or 
other data and methods comparable to standard CO-OPS protocols

3. Has the potential to be adapted to partner-collected water level 
observations

Using: 18 years of data, 57 representative stations
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Overall QC model skill assessment
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Examples of model successes
(m

)

Boston, MA

(m
)

Quonset Point, RI Model acknowledges “good” data within suspect time period

Model captures flat lining
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Examples of model issues

Tropical Storm Cindy

Lake Charles, LA Model struggles with extreme events

Lameshur Bay, St John, VI Model struggles with data shifts
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Development Timeline

Now

Preparation

Data prep, HPC 
resources and AWS 
bucket, project 
planning

  

Fall 
2025

AI Model Development

Project with GCOOS and 
Texas A&M Corpus 
Christi to complete 
peer-reviewed research 
demonstrating model 
approach

  

Fall 
2027

Transition to Operations

Implement the new AI 
model approach into 
CO-OPS’ routine 
operations

  

Spring 2025/ Fall 
2026

Test on partner data

Test accuracy of AI 
model approach on 
external partner 
data
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Development of Automated QA/QC Methods for 
Texas Historical Water Level Data

• The Texas Coastal Ocean Observation Network (TCOON) has been operating 
since the late eighties - about 90 stations with data from several months to 30+ 
years

• Overall Goal: Restore a comprehensive 30+ year TCOON dataset consisting of 
historical and current data by reimagining the Lighthouse data platform 

• Develop and assess automated methods, AI and non AI, to remove unphysical 
data and fill gaps with goal to approach CO-OPS verified water level data quality

This project was funded in whole through a grant from the Texas General Land Office (GLO) providing Gulf of Mexico Energy Security 
Act of 2006 funding made available to the State of Texas and awarded under the Texas Coastal Management Program. The views 
contained herein are those of the authors and should not be interpreted as representing the views of the GLO or the State of Texas.

https://www.conradblucherinstitute.org/


Strategy for Historical Data 
Quality Assessment 

• Follow IOOS QARTOD for water levels
• Use CO-OPS methods as much as 

possible
• Compare data processed 

independently by the historical and 
new methods with NOAA Tides and 
Currents verified water levels for four 
NWLON tide stations 
• Pier 21 (back of barrier island, near 

ship channel, longest record in Gulf)
• Rockport (shallow bay)
• Bob Hall Pier (open coast)
• Port Isabel (along ship channel)

https://tidesandcurrents.noaa.gov/map/index.html?region=Texas 
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https://tidesandcurrents.noaa.gov/map/index.html?region=Texas
https://www.conradblucherinstitute.org/
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Overall Data Flow
Present Focus of the 

Study

https://www.conradblucherinstitute.org/
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Historical Data Analysis

• Analyzed stations for respective data gap distributions and timing of 
presence of back up water levels

• Found 6-min lags for part of the data - corrected with updated LRGS 
messages processing code

• Vertical differences found, mainly due to timing of C1/C2 parameter 
update timing during inspection and instrumentation changes. No 
changes to the data as long as differences are < 2 cm

https://www.conradblucherinstitute.org/
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Developing Workflow

• Flat line flag: remove all flat lines 30 minutes or longer
• Compute median of analyzed time series
• Remove all data below or above 4m from median (Texas Spike 

Threshold)
• Remove points with high rate of change (1m/6 min at present)
• Initial neural net gap filling from nearby stations & comparison with 

measurements - removal if large difference
• Third difference algorithm test (forward and backward)
• Gap filling (gap length dependent): 

• If back up water levels exist use: https://doi.org/10.1109/OCEANS.2014.7003065
• If no back water levels, use neural net nearby station gap filling method

https://www.conradblucherinstitute.org/
https://doi.org/10.1109/OCEANS.2014.7003065
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Conclusions and Discussion

Water level data of high quality with minimal gaps is ideal for 
downstream products- AI enabled QC methods look promising

Questions:

• Provide user different levels of processing? (Ex: raw, qc flagged, gap 
filled, combination of all?)

• Indicate to the users if data has been processed with AI?

• Would you implement automated QC measures for your data type?

• Other suggestions and discussion topics?

https://www.conradblucherinstitute.org/
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Questions?

Email: 
james.spore@noaa.gov

lindsay.abrams@noaa.gov
philippe.tissot@tamucc.edu

tidesandcurrents.noaa.gov
conradblucherinstitute.org

mailto:lindsay.abrams@noaa.gov
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Data Messages Communication Paths Illustration of data paths 
from measurements to 
database through 
different communications 
technologies

https://www.conradblucherinstitute.org/
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Existing Water Level QC Workflow
Primary + Backup 

water level sensors

Onsite

QC

Preliminary Data

Manual processing 

and verification Verified data

Outlier detection
6-minute averaging

Initial QC flags
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Data and methods

Map of NOAA water level stations (red markers) and the stations that were included in 
the training dataset for the model (blue markers). Green lines are cotidal lines. 

● 57 Representative Stations
● Training: 2007-16
● Validation: 2017-18
● Testing: 2019-20
● Data cleaned and scaled
● Resampling tested 90/10 split

Data set

Model Architecture
● MLP Neural Network
● 2 hidden layers (64,32)
● Activation: Sigmoid
● Optimizer: Adam
● Loss Function: Binary cross 

entropy
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Model Architecture
Preprocessed Data (Inputs)

Hidden Layer 1 
x64 nodes

Hidden Layer 2 
x32 nodes

Target 
Predictions 
(Outputs) 

1= 
Good

0= 
Bad

Primary 
+Boolean

Primary Sigma
+Boolean

Primary 
Residual

Backup 
+Boolean

Tide 
Predictions

Geographic 
Location?

Tide Type?

8 Features

Environmental 
Data?
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Data fill model
• Test AI/ML methods for filling missing data and replacing bad water level 

observation data
• Results using a similar MLP NN model and including water level points before 

and after showed promise:

• Further explored LSTM and GRU time series approaches, which showed 
further promise for an AI/ML approach to gap filling
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Considerations for RTO

● Quality of data used for training is very important 
(AI-ready data)

● As authoritative data source, we need to be able to 
explain how data was inferred-plan to publish 
comparison of AI methods to CO-OPS’ existing 
methods and explore explainable AI methods (XAI) 

● HPCs/GPUs can be used to perform many model runs 
at once- essential for accelerating research and 
real-time operations

● Concerns of SME knowledge loss, 
human-in-the-loop methods must 
be considered:

AI Performs Fill

Fill

AI Flags Bad 
Data

Classification

Human Verifies 
Bad Data Fill

Verification
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Potential Outline 

• The main challenges that we encountered when applying AI/ML models for Water Level 
Quality Control . 

     (e.g. Making Water Level Data AI-Ready,  Harmonization strategies, Computing and  Infrastructure Limitations, 
Integration into Operational Systems etc.)

• Overcoming these Challenges 
• Key Takeaways and Recommendations


